CDK8/19 in stress response using mouse embryonic fibroblasts model

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Transcriptional cyclin-dependent kinases CDK8 and CDK19 are enzymatic components of the Mediator complex. CDK19 is supposed to be a minor paralog of CDK8, but, probably, in some situations it can compensate for the absence of CDK8, while evidence for unique functions of both kinases remains sporadic. The vast majority of information on the role and mechanisms of action of these proteins was obtained in experiments using tumor cell lines, which may give irrelevant results due to the changes accumulated by tumor cells. In this regard, we first obtained mice (Cdk8fl/fl/Cdk19//Rosa26/Cre/ERT2) with inducible Cdk8 knockout on the background of constitutive Cdk19 knockout to study their joint role in the whole organism and in primary cells. Using these mice, we obtained Cdk19–/– embryonic fibroblasts, with Cdk8 knockout inducible by 4-hydroxytamoxifen. We found that, unlike most tumor cells, embryonic fibroblasts are sensitive to CDK8/19 inhibition and knockout: inhibition resulted in a significant cell death already at day 5, while knockout resulted in a decrease in their proliferation rate. RNA sequencing revealed, consistent with previously published studies, alterations in the Wnt signaling pathway, cytokine response, and osteoclast differentiation. Consistent with our previously published results, expression of genes associated with steroidogenesis was reduced. Changes associated with the cytoskeleton, adipogenic differentiation, osteogenic differentiation, cell adhesion, extracellular matrix formation, and mitochondrial biogenesis were previously undescribed. When studying the stress response of embryonic fibroblasts, we found that the response to DNA damage from X-ray irradiation and to serum stimulation after starvation was also mediated by CDK8/19 and was significantly reduced in knockout cells.

Толық мәтін

Рұқсат жабық

Авторлар туралы

E. Varlamova

Institute of Gene Biology, Russian Academy of Sciences; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: katerinavarlamova196@gmail.com
Ресей, Moscow, 119334; Moscow, 119334

T. Kirukhina

Institute of Gene Biology, Russian Academy of Sciences

Email: katerinavarlamova196@gmail.com
Ресей, Moscow, 119334

A. Isagulieva

Institute of Gene Biology, Russian Academy of Sciences; Burnazyan Federal Medical Biophysical Center, Federal Medical Biological Agency of the Russian Federation

Email: katerinavarlamova196@gmail.com
Ресей, Moscow, 119334; Moscow, 123098

A. Khamidullina

Institute of Gene Biology, Russian Academy of Sciences; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences

Email: katerinavarlamova196@gmail.com
Ресей, Moscow, 119334; Moscow, 119334

M. Sorokina

Almazov National Medical Research Centre, Ministry of Health of the Russian Federation

Email: katerinavarlamova196@gmail.com
Ресей, St. Petersburg, 197341

Yu. Silaeva

Institute of Gene Biology, Russian Academy of Sciences; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences

Email: katerinavarlamova196@gmail.com
Ресей, Moscow, 119334; Moscow, 119334

V. Tatarskiy

Institute of Gene Biology, Russian Academy of Sciences; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences

Email: katerinavarlamova196@gmail.com
Ресей, Moscow, 119334; Moscow, 119334

A. Bruter

Institute of Gene Biology, Russian Academy of Sciences; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences

Email: katerinavarlamova196@gmail.com
Ресей, Moscow, 119334; Moscow, 119334

Әдебиет тізімі

  1. Richter W.F., Nayak S., Iwasa J., Taatjes D.J. (2022) The Mediator complex as a master regulator of transcription by RNA polymerase II.
  2. Fant C.B., Taatjes D.J. (2019) Regulatory functions of the Mediator kinases CDK8 and CDK19.
  3. Alarcón C., Zaromytidou A.I., Xi Q., Gao S., Yu J., Fujisawa S., Barlas A., Miller A.N., Manova-Todorova K., Macias M.J., Sapkota G., Pan D., Massagué J. (2009) Nuclear CDKs drive SMAD transcriptional activation and turnover in BMP and TGF-beta pathways.
  4. Chen M., Liang J., Ji H., Yang Z., Altilia S., Hu B., Schronce A., McDermott M.S.J., Schools G.P., Lim C.U., Oliver D., Shtutman M.S., Lu T., Stark G.R., Porter D.C., Broude E.V., Roninson I.B. (2017) CDK8/19 Mediator kinases potentiate induction of transcription by NF-κB.
  5. Donner A.J., Szostek S., Hoover J.M., Espinosa J.M. (2007) CDK8 is a stimulus-specific positive coregulator of p53 target genes.
  6. Bancerek J., Poss Z.C., Steinparzer I., Sedlyarov V., Pfaffenwimmer T., Mikulic I., Dölken L., Strobl B., Müller M., Taatjes D.J., Kovarik P. (2013) CDK8 kinase phosphorylates transcription factor STAT1 to selectively regulate the interferon response.
  7. Rzymski T., Mikula M., Żyłkiewicz E., Dreas A., Wiklik K., Gołas A., Wójcik K., Masiejczyk M., Wróbel A., Dolata I., Kitlińska A., Statkiewicz M., Kuklinska U., Goryca K., Sapała Ł., Grochowska A., Cabaj A., Szajewska-Skuta M., Gabor-Worwa E., Kucwaj K., Białas A., Radzimierski A., Combik M., Woyciechowski J., Mikulski M., Windak R., Ostrowski J., Brzózka K. (2017) SEL120-34A is a novel CDK8 inhibitor active in AML cells with high levels of serine phosphorylation of STAT1 and STAT5 transactivation domains.
  8. Steinparzer I., Sedlyarov V., Rubin J.D., Eislmayr K., Galbraith M.D., Levandowski C.B., Vcelkova T., Sneezum L., Wascher F., Amman F., Kleinova R., Bender H., Andrysik Z., Espinosa J.M., Superti-Furga G., Dowell R.D., Taatjes D.J., Kovarik P. (2019) Transcriptional responses to IFN-γ require Mediator kinase-dependent pause release and mechanistically distinct CDK8 and CDK19 functions.
  9. Andolfi C., Bartolini C., Morales E., Gündoğdu B., Puhr M., Guzman J., Wach S., Taubert H., Aigner A., Eder I.E., Handle F., Culig Z. (2024) MED12 and CDK8/19 modulate androgen receptor activity and enzalutamide response in prostate cancer. (10), bqae114.
  10. McDermott M.S., Chumanevich A.A., Lim C.U., Liang J., Chen M., Altilia S., Oliver D., Rae J.M., Shtutman M., Kiaris H., Győrffy B., Roninson I.B, Broude E.V. (2017) Inhibition of CDK8 mediator kinase suppresses estrogen dependent transcription and the growth of estrogen receptor positive breast cancer.
  11. Firestein R., Bass A.J., Kim S.Y., Dunn I.F., Silver S.J., Guney I., Freed E., Ligon A.H., Vena N., Ogino S., Chheda M.G., Tamayo P., Finn S., Shrestha Y., Boehm J.S., Jain S., Bojarski E., Mermel C., Barretina J., Chan J.A., Baselga J., Tabernero J., Root D.E., Fuchs C.S., Loda M., Shivdasani R.A., Meyerson M., Hahn W.C. (2008) CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity.
  12. Adler A.S., McCleland M.L., Truong T., Lau S., Modrusan Z., Soukup T.M., Roose-Girma M., Blackwood E.M., Firestein R. (2012) CDK8 maintains tumor dedifferentiation and embryonic stem cell pluripotency.
  13. Galbraith M.D., Andrysik Z., Pandey A., Hoh M., Bonner E.A., Hill A.A., Sullivan K.D., Espinosa J.M. (2017) CDK8 kinase activity promotes glycolysis.
  14. Ilchuk L.A., Kubekina M.V., Okulova Y.D., Silaeva Y.Y., Tatarskiy V.V., Filatov M.A., Bruter A.V. (2023) Genetically engineered mice unveil in vivo roles of the Mediator complex. , 9330.
  15. Westerling T., Kuuluvainen E., Mäkelä T.P. (2007) Cdk8 is essential for preimplantation mouse development.
  16. McCleland M.L., Soukup T.M., Liu S.D., Esensten J.H., de Sousa e Melo F., Yaylaoglu M., Warming S., Roose-Girma M., Firestein R. (2015) Cdk8 deletion in the Apc(Min) murine tumour model represses EZH2 activity and accelerates tumourigenesis.
  17. Zhang Z., Lu Y., Qi Y., Xu Y., Wang S., Chen F., Shen M., Chen M., Chen N., Yang L., Chen S., Wang F., Su Y., Hu M., Wang J. (2022) CDK19 regulates the proliferation of hematopoietic stem cells and acute myeloid leukemia cells by suppressing p53-mediated transcription of p21.
  18. Uehara T., Abe K., Oginuma M., Ishitani S., Yoshihashi H., Okamoto N., Takenouchi T., Kosaki K., Ishitani T. (2020) Pathogenesis of CDK8-associated disorder: two patients with novel CDK8 variants and in vitro and in vivo functional analyses of the variants.
  19. Chen M., Li J., Liang J., Thompson Z.S., Kathrein K., Broude E.V., Roninson I.B. (2019) Systemic toxicity reported for CDK8/19 inhibitors CCT251921 and MSC2530818 is not due to target inhibition. , 1413.
  20. Bruter A.V., Varlamova E.A., Stavskaya N.I., Antysheva Z.G., Manskikh V.N., Tvorogova A.V., Korshunova D.S., Khamidullina A.I., Utkina M.V., Bogdanov V.P., Nikiforova A.I., Albert E.A., Maksimov D.O., Li J., Chen M., Shtil A.A., Roninson I.B., Mogila V.A., Silaeva Y.Y., Tatarskiy V.V. (2024) Knockout of cyclin dependent kinases 8 and 19 leads to depletion of cyclin C and suppresses spermatogenesis and male fertility in mice. eLife. 13, RP96465.
  21. Luyties O., Taatjes D.J. (2022) The Mediator kinase module: an interface between cell signaling and transcription.
  22. Dastagir K., Reimers K., Lazaridis A., Jahn S., Maurer V., Strauß S., Dastagir N., Radtke C., Kampmann A., Bucan V., Vogt P.M. (2014) Murine embryonic fibroblast cell lines differentiate into three mesenchymal lineages to different extents: new models to investigate differentiation processes.
  23. Ilchuk L.A., Stavskaya N.I., Varlamova E.A., Khamidullina A.I., Tatarskiy V.V., Mogila V.A., Kolbutova K.B., Bogdan S.A., Sheremetov A.M., Baulin A.N., Filatova I.A., Silaeva Y.Y., Filatov M.A., Bruter A.V. (2022) Limitations of tamoxifen application for in vivo genome editing using Cre/ERT2 system.
  24. Schneider C.A., Rasband W.S., Eliceiri K.W. (2012) NIH image to ImageJ: 25 years of image analysis.
  25. Piven Y.A., Yastrebova M.A., Khamidullina A.I., Scherbakov A.M., Tatarskiy V.V., Rusanova J.A., Baranovsky A.V., Zinovich V.G., Khlebnicova T.S., Lakhvich F.A. (2022) Novel O-acylated (E)-3-aryl-6,7-dihydrobenzisoxazol-4(5H)-one oximes targeting HSP90-HER2 axis in breast cancer cells.
  26. Zheng M., Morgan-Lappe S.E., Yang J., Bockbrader K.M., Pamarthy D., Thomas D., Fesik S.W., Sun Y. (2008) Growth inhibition and radiosensitization of glioblastoma and lung cancer cells by small interfering RNA silencing of tumor necrosis factor receptor-associated factor 2.
  27. Yang H., Wang H., Ren J., Chen Q., Chen Z.J. (2017) cGAS is essential for cellular senescence.
  28. Li Y.C., Chao T.C., Kim H.J., Cholko T., Chen S.F., Li G., Snyder L., Nakanishi K., Chang C.E., Murakami K., Garcia B.A., Boyer T.G., Tsai K.L. (2021) Structure and noncanonical Cdk8 activation mechanism within an Argonaute-containing Mediator kinase module.
  29. Sooraj D., Sun C., Doan A., Garama D.J., Dannappel M.V., Zhu D., Chua H.K., Mahara S., Wan Hassan W.A., Tay Y.K., Guanizo A., Croagh D., Prodanovic Z., Gough D.J., Wan C., Firestein R. (2022) MED12 and BRD4 cooperate to sustain cancer growth upon loss of Mediator kinase.
  30. Chen M., Li J., Zhang L., Wang L., Cheng C., Ji H., Altilia S., Ding X., Cai G., Altomare D., Shtutman M., Byrum S.D., Mackintosh S.G., Feoktistov A., Soshnikova N., Mogila V.A., Tatarskiy V., Erokhin M., Chetverina D., Prawira A., Ni Y., Urban S., McInnes C., Broude E.V., Roninson I.B. (2023) CDK8 and CDK19: positive regulators of signal-induced transcription and negative regulators of Mediator complex proteins.
  31. Kim S., Leong A., Kim M., Yang H.W. (2022) CDK4/6 initiates Rb inactivation and CDK2 activity coordinates cell-cycle commitment and G1/S transition.
  32. Kouyama R., Suganami T., Nishida J., Tanaka M., Toyoda T., Kiso M., Chiwata T., Miyamoto Y., Yoshimasa Y., Fukamizu A., Horiuchi M., Hirata Y., Ogawa Y. (2005) Attenuation of diet-induced weight gain and adiposity through increased energy expenditure in mice lacking angiotensin II type 1a receptor.
  33. Than A., Xu S., Li R., Leow M.K.-S., Sun L., Chen P. (2017) Angiotensin type 2 receptor activation promotes browning of white adipose tissue and brown adipogenesis.
  34. Sanada Y., Yamamoto T., Satake R., Yamashita A., Kanai S., Kato N., van de Loo F.A., Nishimura F., Scherer P.E., Yanaka N. (2016) Serum amyloid A3 gene expression in adipocytes is an indicator of the interaction with macrophages.
  35. Dang T.T.H., Choi M., Pham H.G., Yun J.W. (2021) Cytochrome P450 2F2 (CYP2F2) negatively regulates browning in 3T3-L1 white adipocytes.
  36. Zein H.S., Abou-Samra E., Scur M., Gutsol A., Hall C.W., Dasgupta B., Gharibeh L., Abujamel T., Medina-Luna D., Gamage G.S., Pelino T.J., Nemer M., Rahim M.M.A., Steinle A., Parsons B.D., Makrigiannis A.P. (2022) Clr-f expression regulates kidney immune and metabolic homeostasis.
  37. Zelová H., Hošek J. (2013) TNF-α signalling and inflammation: interactions between old acquaintances.
  38. Cheng H.-H., Chu L.-Y., Chiang L.-Y., Chen H.-L., Kuo C.-C., Wu K.K. (2016) Inhibition of cancer cell epithelial mesenchymal transition by normal fibroblasts via production of 5-methoxytryptophan.
  39. Chen D.-Q., Wu X.-Q., Chen L., Hu H.-H., Wang Y.-N., Zhao Y.-Y. (2020) Poricoic acid A as a modulator of TPH-1 expression inhibits renal fibrosis via modulating protein stability of β-catenin and β-catenin-mediated transcription.
  40. Tian X., Wu L., Jiang M., Zhang Z., Wu R., Miao J., Liu C., Gao S. (2021) Downregulation of GLYAT facilitates tumor growth and metastasis and poor clinical outcomes through the PI3K/AKT/Snail pathway in human breast cancer.
  41. Hu Q., Zhu L., Li Y., Zhou J., Xu J. (2021) ACTA1 is inhibited by PAX3-FOXO1 through RhoA-MKL1-SRF signaling pathway and impairs cell proliferation, migration and tumor growth in alveolar rhabdomyosarcoma.
  42. Mullin N.K., Mallipeddi N.V., Hamburg-Shields E., Ibarra B., Khalil A.M., Atit R.P. (2017) Wnt/β-catenin signaling pathway regulates specific lncRNAs that impact dermal fibroblasts and skin fibrosis.
  43. Sun R., Zhang X., Gong T., Zhang Y., Wang Q., He C., Ju J., Jin C., Ding W., Gao J., Shen J., Li Q., Shan Z. (2024) Knockdown H19 accelerated iPSCs reprogramming through epigenetic modifications and mesenchymal-to-epithelial transition. , 509.
  44. Jin X.J., Chen X.J., Zhang Z.F., Hu W.S., Ou R.Y., Li S., Xue J.S., Chen L.L., Hu Y., Zhu H. (2019) Long noncoding RNA SNHG12 promotes the progression of cervical cancer via modulating miR-125b/STAT3 axis.
  45. Li Z., Wu Y., Zhang C., Dai S., Wei S., Zhao R., Gao F., Zhao L., Shan B. (2023) LncRNA SNHG5 suppresses cell migration and invasion of human lung adenocarcinoma via regulation of epithelial-mesenchymal transition.
  46. Li Y., Hu J., Guo D., Ma W., Zhang X., Zhang Z., Lu G., He S. (2022) LncRNA SNHG5 promotes the proliferation and cancer stem cell-like properties of HCC by regulating UPF1 and Wnt-signaling pathway.
  47. Zhu M., Wang Q., Tian P., Cheng L., Sun Z., Hong Q., Lv P., Ji L., Liu Y., Tang Q.Q., Wen B. (2021) A long non-coding RNA specifically expressed in early embryos programs the metabolic balance in adult mice. Biochim. Biophys.
  48. Paneru B.D., Chini J., McCright S.J., DeMarco N., Miller J., Joannas L.D., Henao-Mejia J., Titchenell P.M., Merrick D.M., Lim H.W., Lazar M.A., Hill D.A. (2024) Myeloid-derived miR-6236 potentiates adipocyte insulin signaling and prevents hyperglycemia during obesity.
  49. Sallam T., Jones M., Thomas B.J., Wu X., Gilliland T., Qian K., Eskin A., Casero D., Zhang Z., Sandhu J., Salisbury D., Rajbhandari P., Civelek M., Hong C., Ito A., Liu X., Daniel B., Lusis A.J., Whitelegge J., Nagy L., Castrillo A., Smale S., Tontonoz P. (2018) Transcriptional regulation of macrophage cholesterol efflux and atherogenesis by a long noncoding RNA.
  50. Donner A.J., Ebmeier C.C., Taatjes D.J., Espinosa J.M. (2010) CDK8 is a positive regulator of transcriptional elongation within the serum response network.
  51. Ebmeier C.C., Taatjes D.J. (2010) Activator-Mediator binding regulates Mediator-cofactor interactions.
  52. Lloyd R.L., Urban V., Muñoz-Martínez F., Ayestaran I., Thomas J.C., de Renty C., O’Connor M.J., Forment J.V., Galanty Y., Jackson S.P. (2021) Loss of сyclin C or CDK8 provides ATR inhibitor resistance by suppressing transcription-associated replication stress.
  53. Chang K.T., Jezek J., Campbell A.N., Stieg D.C., Kiss Z.A., Kemper K., Jiang P., Lee H.O., Kruger W.D., van Hasselt P.M., Strich R. (2022) Aberrant cyclin C nuclear release induces mitochondrial fragmentation and dysfunction in MED13L syndrome fibroblasts.
  54. Martinez-Fabregas J., Wang L., Pohler E., Cozzani A., Wilmes S., Kazemian M., Mitra S., Moraga I. (2020) CDK8 fine-tunes IL-6 transcriptional activities by limiting STAT3 resident time at the gene loci.
  55. Kulics J., Colten H.R., Perlmutter D.H. (1990) Counterregulatory effects of interferon-gamma and endotoxin on expression of the human C4 genes.
  56. Yan B., Freiwald T., Chauss D., Wang L., West E., Mirabelli C., Zhang C.J., Nichols E.M., Malik N., Gregory R., Bantscheff M., Ghidelli-Disse S., Kolev M., Frum T., Spence J.R., Sexton J.Z., Alysandratos K.D., Kotton D.N., Pittaluga S., Bibby J., Niyonzima N., Olson M.R., Kordasti S., Portilla D., Wobus C.E., Laurence A., Lionakis M.S., Kemper C., Afzali B., Kazemian M. (2021) SARS-CoV-2 drives JAK1/2-dependent local complement hyperactivation.
  57. Sadzak I., Schiff M., Gattermeier I., Glinitzer R., Sauer I., Saalmüller A., Yang E., Schaljo B., Kovarik P. (2008) Recruitment of STAT1 to chromatin is required for interferon-induced serine phosphorylation of STAT1 transactivation domain.
  58. Tsitsikov E.N., Laouini D., Dunn I.F., Sannikova T.Y., Davidson L., Alt F.W., Geha R.S. (2001) TRAF1 is a negative regulator of TNF signaling. enhanced TNF signaling in TRAF1-deficient mice.
  59. Quiros P.M., Goyal A., Jha P., Auwerx J. (2017) Analysis of mtDNA/nDNA ratio in mice.
  60. Wegrzyn J., Potla R., Chwae Y.J., Sepuri N.B., Zhang Q., Koeck T., Derecka M., Szczepanek K., Szelag M., Gornicka A., Moh A., Moghaddas S., Chen Q., Bobbili S., Cichy J., Dulak J., Baker D.P., Wolfman A., Stuehr D., Hassan M.O., Fu X.Y., Avadhani N., Drake J.I., Fawcett P., Lesnefsky E.J., Larner A.C. (2009) Function of mitochondrial Stat3 in cellular respiration.
  61. Fernando C.D., Jayasekara W.S.N., Inampudi C., Kohonen-Corish M.R.J., Cooper W.A., Beilharz T.H., Josephs T.M., Garama D.J., Gough D.J. (2023) A STAT3 protein complex required for mitochondrial mRNA stability and cancer.
  62. Liao J.Z., Chung H.L., Shih C., Wong K.K.L., Dutta D., Nil Z., Burns C.G., Kanca O., Park Y.J., Zuo Z., Marcogliese P.C., Sew K., Bellen H.J., Verheyen E.M. (2024) Cdk8/CDK19 promotes mitochondrial fission through Drp1 phosphorylation and can phenotypically suppress pink1 deficiency in Drosophila.
  63. Chen J., Liu W. (2023) Lin28a induced mitochondrial dysfunction in human granulosa cells via suppressing LARS2 expression.
  64. Yastrebova M.A., Khamidullina A.I., Tatarskiy V.V., Scherbakov A.M. (2021) Snail-family proteins: role in carcinogenesis and prospects for antitumor therapy.
  65. Wang H., Wang H.S., Zhou B.H., Li C.L., Zhang F., Wang X.F., Zhang G., Bu X.Z., Cai S.H., Du J. (2013) Epithelial-mesenchymal transition (EMT) induced by TNF-α requires AKT/GSK-3β-mediated stabilization of Snail in colorectal cancer.
  66. Chen Y., Wen H., Zhou C., Su Q., Lin Y., Xie Y., Huang Y., Qiu Q., Lin J., Huang X., Tan W., Min C., Wang C. (2019) TNF-α derived from M2 tumor-associated macrophages promotes epithelial-mesenchymal transition and cancer stemness through the Wnt/β-catenin pathway in SMMC-7721 hepatocellular carcinoma cells.
  67. Lynch C.J., Bernad R., Martínez-Val A., Shahbazi M.N., Nóbrega-Pereira S., Calvo I., Blanco-Aparicio C., Tarantino C., Garreta E., Richart-Ginés L., Alcazar N., Graña-Castro O., Gómez-Lopez G., Aksoy I., Muñoz-Martín M., Martinez S., Ortega S., Prieto S., Simboeck E., Camasses A., Stephan-Otto Attolini C., Fernandez A.F., Sierra M.I., Fraga M.F., Pastor J., Fisher D., Montserrat N., Savatier P., Muñoz J., Zernicka-Goetz M., Serrano M. (2020) Global hyperactivation of enhancers stabilizes human and mouse naive pluripotency through inhibition of CDK8/19 Mediator kinases.
  68. Bernad R., Lynch C.J., Urdinguio R.G., Stephan-Otto Attolini C., Fraga M.F., Serrano M. (2021) Stability of imprinting and differentiation capacity in naïve human cells induced by chemical inhibition of CDK8 and CDK19.
  69. Jang Y., Kang S., Han H.H., Kim B.G., Cho N.H. (2024) CD24 induced cellular quiescence-like state and chemoresistance in ovarian cancer cells via miR-130a/301a-dependent CDK19 downregulation.
  70. Kuchur O.A., Zavisrskiy A.V., Shtil A.A. (2023) Transcriptional reprogramming regulates tumor cell survival in response to ionizing radiation: a role of p53.
  71. Serrao A., Jenkins L.M., Chumanevich A.A., Horst B., Liang J., Gatza M.L., Lee N.Y., Roninson I.B., Broude E.V., Mythreye K. (2018) Mediator kinase CDK8/CDK19 drives YAP1-dependent BMP4-induced EMT in cancer.
  72. Ho T.-Y., Sung T.-Y., Pan S.-L., Huang W.-J., Hsu K.-C., Hsu J.-Y., Lin T.E., Hsu C.-M., Yang C.-R. (2023) The study of a novel CDK8 inhibitor E966-0530-45418 that inhibits prostate cancer metastasis in vitro and in vivo.
  73. Galbraith M.D., Allen M.A., Bensard C.L., Wang X., Schwinn M.K., Qin B., Long H.W., Daniels D.L., Hahn W.C., Dowell R.D., Espinosa J.M. (2013) HIF1A employs CDK8-Mediator to stimulate RNAPII elongation in response to hypoxia.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. CDK8/19 are required for the viability of mouse embryonic fibroblasts (MEFs) in vitro. a — Confirmation of CDK8 elimination in MEFs after 72 h of incubation in the presence of 4-hydroxytamoxifen (4-OHT). Each lane represents a MEF line derived from a single embryo. b — Cyclin C levels are reduced to undetectable levels only in the absence of both CDK8 and CDK19 kinases. c — Fourteen days after induction of Cdk8/Cdk19 gene knockout (iR/8–/19–), the proliferative activity of MEFs is reduced by 1.5-fold compared to wild-type (WT) MEFs. g — Distribution of MEFs with Cdk8/Cdk19– gene knockout (iR/8–/19–) by cell cycle phases does not differ from the distribution of control MEFs without induction (R/8fl/19–) throughout the entire experiment (21 days). G0-G1 corresponds to the cell cycle phase with a diploid chromosome set; G2-M — with a tetraploid chromosome set; S — synthetic phase of the cycle; subG1 fraction — cells with fragmented DNA (dead cells). d — Senexin B causes dose-dependent cell death of wild-type MEF cells within 5 days (IC50 = 0.39 ± 0.7 μM). e — Senexin B at a concentration of 1 μM leads to the death of 72.0 ± 6.9% of wild-type MEF cells. The level of pRb phosphorylation at serine residues 807/811 (phospho-pRb S807/811) is reduced 14 days after Cdk8 knockout induction in MEF iR/8–/19– cells (g) and after 72 h of incubation in the presence of 1 μM senexin B (h). Densitometric analysis of Western blots was performed in three (g) and six (h) biological replicates for MEF cells obtained from different embryos (ns – data are statistically insignificant, *p < 0.05).

Жүктеу (76KB)
3. Fig. 2. In mouse embryonic fibroblasts (MEFs), processes associated with inflammation response, metabolism, and cytoskeletal dynamics change 14 days after induction of Cdk8/Cdk19 knockout. a — Dot plot of the dependence of differential gene expression (DEG) on the lgp_adjust value. Genes with insignificant changes (p_adjust < 0.05) are shown in gray. Genes with functions described in more detail in the text are shown in green. Results of enrichment of biological processes (GO analysis) (b) and molecular pathways (according to the KEGG database) of DEGs (c). Designations: WT — R/8fl MEF without induction (wild-type fibroblasts), iR/8–/19– — MEF with Cdk8/Cdk19 knockout. The analysis was performed in R using the clusterProfiler library. g — In iR/8–/19– MEF, the regulation of expression of genes encoded by the mitochondrial genome (mt-Nd4, mt-Nd5, mt-Nd2, mt-Nd6, mt-Te, mt-Rnr, mt-Cytb) and nuclear genes encoding mitochondrial proteins (Lars2 and Trmt112-ps2) is disrupted. d — In iR/8–/19– MEF, expression of various non-coding RNAs is altered.

Жүктеу (112KB)
4. Fig. 3. CDK8/19 deficiency results in decreased levels of key proteins involved in various cellular processes. Western blot analysis of MEFs 3 and 14 days after Cdk8 gene knockout induction with 1 μM 4-hydroxytamoxifen (4-OHT). The decreased levels of β-catenin, p65, and ERK1/2 proteins support the RNA sequencing results of iR/8–/19– MEFs.

Жүктеу (44KB)
5. Fig. 4. CDK8/19 are involved in the MEF response to serum stimulation and DNA damage. a — MEFs proliferate more slowly in response to stimulation with 10% DMEM in the absence of CDK8/19. The change in proliferation rate is calculated relative to the first day of stimulation. b — Dynamics of changes in cell distribution by cell cycle phases for 24 h after addition of 10% DMEM. c — Knockout of the Cdk8/Cdk19 genes, in contrast to inhibition of their kinase activity, leads to less pronounced induction of serum response genes. ns — changes are statistically insignificant, *p < 0.05, ****p < 0.00001. d — Results of Western blotting of total protein of wild-type and iR/8–/19– MEFs 48 and 74 h after exposure to X-ray irradiation at a dose of 4 or 7 g. Cdk8/Cdk19 knockout MEFs exhibit a less pronounced DNA damage response and higher levels of apoptosis activation marker (p53).

Жүктеу (71KB)

© Russian Academy of Sciences, 2025