Cesium hydrosulfate phosphate crystals: conductivity and real structure at increasing temperature

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Superprotonic crystals Cs3(HSO4)2(H2PO4) and Cs4(HSO4)3(H2PO4) have been investigated by conducting atomic force microscopy at increasing temperature. Local volt-ampere characteristics have been measured and an increase in conductivity at 413–453 K for Cs3(HSO4)2(H2PO4) and Cs4(HSO4)3(H2PO4) by two and three orders of magnitude, respectively, has been recorded. Differences in the conductive characteristics of crystals of different compositions in the vicinity of the phase transition are shown. Information on topographic and electrical features of crystalline phases before and after exposure to temperature and electric fields has been obtained. The influence of external factors on the stability of the surface microstructure is evaluated. Possible mechanisms of structural-phase transformations of isostructural compounds with different ratio of sulfate and phosphate groups are discussed.

全文:

受限制的访问

作者简介

R. Gainutdinov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov institute”

Email: alla@crys.ras.ru
俄罗斯联邦, Moscow

A. Tolstikhina

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov institute”

编辑信件的主要联系方式.
Email: alla@crys.ras.ru
俄罗斯联邦, Moscow

I. Makarova

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov institute”

Email: alla@crys.ras.ru
俄罗斯联邦, Moscow

S. Leesment

LLC “Xillect”

Email: alla@crys.ras.ru
俄罗斯联邦, Moscow

V. Komornikov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov institute”

Email: alla@crys.ras.ru
俄罗斯联邦, Moscow

参考

  1. Haile S.M., Boysen D.A., Chisholm C.R.I., Merle R.B. // Nature. 2001. V. 410. P. 910. https://doi.org/10.1038/35073536
  2. Pawlaczyk Cz., Pawłowski A., Połomska M. et al. // Phase Transitions. 2010. V. 83. P. 854. http://dx.doi.org/10.1080/01411594.2010.509159
  3. Louie M.W., Hightower A., Haile S.M. // ACS Nano. 2010. V. 4. № 5. P. 2811.
  4. Paschos O., Kunze J., Stimming U., Maglia F. // J. Phys.: Condens. Matter. 2011. V. 23. P. 234110. http://dx.doi.org/10.1088/0953-8984/23/23/234110
  5. Ponomareva V., Lavrova G. // Solid State Electrochem. 2011. V. 15. P. 213. https://doi.org/10.1007/s10008-010-1227-1
  6. Dupuis A.-C. // Progress in Materials Science. 2011. V. 56. P. 289. http://dx.doi.org/10.1016/j.pmatsci.2010.11.001
  7. Mohammad N., Mohamad A.B., Kadhum A.A.H., Loh K.S. // J. Power Sources. 2016. V. 322. P. 77. https://doi.org/10.1016/j.jpowsour.2016.05.021
  8. Aili D., Gao Y., Han J., Li Q. // Solid State Ionics. 2017. V. 306. P. 13. http://dx.doi.org/10.1016/j.ssi.2017.03.012
  9. Colomban P. // Solid State Ionics. 2019. V. 334. P. 125. https://www.researchgate.net/publication/331249475
  10. Ortiz E., Vargas R.A., Tróchez J.C. et al. // J. Phys. Status Solidi. C. 2007. V. 4. № 11. P. 4070. https://doi.org/10.1002/pssc.200675933
  11. Ortiz E., Piñeres I., León C. // J. Therm. Anal. Calorim. 2016. V. 126. P. 407. https://doi.org/10.1007/s10973-016-5474-y
  12. Баранов А.И., Синицин В.В., Понятовский Е.Г. и др. // Письма в ЖЭТФ. 1986. Т. 44. Вып. 44. С. 186.
  13. Mikheykin A.S., Chernyshov D.Yu., Makarova I.P. et al. // Solid State Ionics. 2017. V. 305. P. 30. https://doi.org/10.1016/j.ssi.2017.04.017
  14. Papandrew B., Li Q., Okatan M.B. et al. // Nanoscale. 2015. V. 7. P. 20089. https://doi.org/10.1039/c5nr04809e
  15. Kalinin S., Dyck O., Balke N. et al. // ACS Nano. 2019. V. 13. № 9. P. 9735. https://doi.org/10.1021/acsnano.9b02687
  16. Kempaiah R., Vasudevamurthy G., Subramanian A. // Nano Energy. 2019. P. 103925. https://doi.org/10.1016/j.nanoen.2019.103925
  17. Гайнутдинов Р.В., Толстихина А.Л., Селезнева Е.В., Макарова И.П. // ЖТФ. 2020. № 11. С. 1843. https://doi.org/10.21883/JTF.2020.11.49972.116-20
  18. Коморников В.А., Гребенев В.В., Макарова И.П. и др. // Кристаллография. 2016. Т. 61. № 4. С. 645. https://doi.org/10.1134/S1063774516040106
  19. Гайнутдинов Р.В., Толстихина А.Л., Селезнева Е.В. и др. // Кристаллография. 2024. Т. 69. № 3. С. 470. https://doi.org/10.31857/S0023476124030129
  20. Анкудинов А.В., Гущина Е.В., С.А. Гуревич С.А. и др. // Международный научный журнал “Альтернативная энергетика и экология”. 2008. № 10 (66). С. 30.
  21. Гайнутдинов Р.В., Толстихина А.Л., Селезнева Е.В. и др. // Кристаллография. 2023. Т. 68. № 2. С. 290. https://doi.org/10.31857/S0023476123020066
  22. Makarova I.P., Isakova N.N., Kalyukanov A.I. et al. // Acta Cryst. B. 2024. V. 80. P. 201. https://doi.org/10.1107/s2052520624003470 Q2

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Local CVCs of Cs3(HSO4)2(H2PO4) (a) and Cs4(HSO4)3(H2PO4) (b) samples, recorded along the a axis under atmospheric conditions at 300, 333, 393, 413, 453 K.

下载 (159KB)
3. Fig. 2. Local CVCs of samples recorded along the a axis at 393 K: a – Cs3(HSO4)2(H2PO4), b – Cs4(HSO4)3(H2PO4).

下载 (65KB)
4. Fig. 3. AFM images of the surface of samples at 296 K, preheated to 393 K: a, b, c – Cs3(HSO4)2(H2PO4), d, e, e – Cs4(HSO4)3(H2PO4). Topography (a, b, d, e), surface potential (c, e). The image plane is perpendicular to the a axis.

下载 (731KB)

版权所有 © Russian Academy of Sciences, 2025