Phase transitions in poly(vinylidene fluoride)-based composite under mechanical stresses

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this work the phase transition in composites based on polyvinylidene fluoride and cobalt ferrite nanoparticles under uniaxial stretching at 100, 200 and 300% is investigated. It was found that when the composite is stretched at 300%, there is a maximum increase in the β-phase fraction from 1% for the unstretched sample to 91%, while the electroactive phase increases from 74 to 92%. It was also found that tensile stretching of the composites leads to an increase in tensile strength: from 5.7 to 85.0 MPa. This tensile pattern also contributes to an increase in coercivity, which is due to the increase in the interparticle distance in the composite structure. These results emphasise the importance of mechanical properties and phase changes in polymer composites containing ferrites for their future applications.

全文:

受限制的访问

作者简介

P. Vorontsov

Kant Baltic Federal University

编辑信件的主要联系方式.
Email: pavorontsov@kantiana.ru
俄罗斯联邦, Kaliningrad

V. Salnikov

Kant Baltic Federal University

Email: pavorontsov@kantiana.ru
俄罗斯联邦, Kaliningrad

V. Savin

Kant Baltic Federal University

Email: pavorontsov@kantiana.ru
俄罗斯联邦, Kaliningrad

S. Vorontsov

Kant Baltic Federal University

Email: pavorontsov@kantiana.ru
俄罗斯联邦, Kaliningrad

L. Panina

Kant Baltic Federal University; National University of Science and Technology “MISIS”

Email: pavorontsov@kantiana.ru
俄罗斯联邦, Kaliningrad; Moscow

P. Ershov

Kant Baltic Federal University

Email: pavorontsov@kantiana.ru
俄罗斯联邦, Kaliningrad

V. Rodionova

Kant Baltic Federal University

Email: pavorontsov@kantiana.ru
俄罗斯联邦, Kaliningrad

参考

  1. Saxena P., Shukla P. // Adv. Compos. Hybrid Mater. 2021. V. 4. P. 8. https://doi.org/10.1007/s42114-021-00217-0
  2. Dallaev R., Pisarenko T., Sobola D. et al. // Polymers (Basel). 2022. V. 14. № 22. P. 1. https://doi.org/10.3390/polym14224793
  3. Su Y.P., Sim L.N., Li X. et al. // J. Memb. Sci. 2021. V. 620. P. 118818. https://doi.org/10.1016/j.memsci.2020.118818
  4. Bichurin M., Petrov R., Sokolov O. et al. // Sensors. 2021. V. 21. № 18. P. 6232. https://doi.org/10.3390/s21186232
  5. Narita F., Fox M. // Adv. Eng. Mater. 2018. V. 20. № 5. P. 1. https://doi.org/10.1002/adem.201700743
  6. Alibakhshi H., Esfahani H., Sharifi E. // Ceram. Int. 2024. V. 50. № 5. P. 8017. https://linkinghub.elsevier.com/retrieve/pii/S0272884223040506
  7. Liu F., Hashim N.A., Liu Y., Abed R. // J. Memb. Sci. 2011. V. 375. № 1–2. P. 1. http://dx.doi.org/10.1016/j.memsci.2011.03.014
  8. Lovinger A.J. // Science. 1983. V. 220. № 4602. P. 1115. https://doi.org/10.1126/science.220.4602.1115
  9. Pereira N., Lima A., Lanceros-Mendez S., Martins P. // Materials. 2020. V. 13. № 18. P. 4033. https://doi.org/10.3390/ma13184033
  10. Omelyanchik A., Antipova V., Gritsenko Ch. et al. // Nanomaterials. 2021. V. 11. № 5. P. 1154. https://doi.org/10.3390/nano11051154
  11. Antipova V., Omelyanchik A., Sobolev K. et al. // Nanobiotechnology Reports. 2023. V. 18. Suppl. 1. P. S186. https://doi.org/10.1134/S2635167623600967
  12. Koç M., Demirci C., Parali L. et al. // J. Mater. Sci. Mater. Electron. 2022. V. 33. № 10. P. 8048. https://doi.org/10.1007/s10854-022-07956-w
  13. Cozza E.S., Monticelli O., Marsano E., Cebe P. // Polym. Int. 2013. V. 62. № 1. P. 41. http://dx.doi.org/10.1002/pi.4314
  14. Sharma M., Madras G., Bose S. // Phys. Chem. Chem. Phys. 2014. V. 16. № 28. P. 14792. http://dx.doi.org/10.1039/c4cp01004c
  15. Chen B., Yuan M., Ma R. et al. // Chem. Eng. J. 2022. V. 433. P. 134475. http://dx.doi.org/10.1016/j.cej.2021.134475
  16. Jovanović S., Spreitzer M., Otoničar M. et al. // J. Alloys Compd. 2014. V. 589. P. 271. http://dx.doi.org/10.1016/j.jallcom.2013.11.217
  17. Botvin V., Fetisova A., Mukhortova Y. et al. // Polymers. 2023. V. 15. № 14. P. 3135. http://dx.doi.org/10.3390/polym15143135
  18. Terzić I., Meereboer N.L., Mellema H.H. et al. // J. Mater. Chem. C. 2019. V. 7. № 4. P. 968. https://doi.org/10.1039/C8TC05017A
  19. Ribeiro C., Costa C., Correia D. et al. // Nat. Protoc. 2018. V. 13. № 4. P. 681. http://dx.doi.org/10.1038/nprot.2017.157
  20. Sayyar S., Aslibeiki B., Asgari A. // Phys. Appl. Mater. 2022. V. 2. P. 165. https://doi.org/10.22075/ppam.2022.29079.1047
  21. Stoner B., Wohlfarth P.A. // Phys. Dep. 1948. V. 250. № 826. P. 599. http://dx.doi.org/10.1098/rsta.1948.0007
  22. Salnikov V.D., Aga-Tagieva S., Kolesnikova V. et al. // J. Magn. Magn. Mater. 2024. V. 595. P. 171498. http://dx.doi.org/10.1016/j.jmmm.2023.171498
  23. Zhang L., Li S., Zhu Z. et al. // Adv. Funct. Mater. 2023. V. 33. № 38. P. 2301302. http://dx.doi.org/10.1002/adfm.202301302
  24. Satapathy S., Pawar S., Gupta P.K., Varma K. // Bull. Mater. Sci. 2011. V. 34. № 4. P. 727. http://dx.doi.org/10.1007/s12034-011-0187-0
  25. Cai X., Lei T., Sun D., Lin L. // RSC Adv. 2017. V. 7. № 25. P. 15382. http://dx.doi.org/10.1039/C7RA01267E
  26. Peters A., Candau S.J. // Macromolecules. 1986. V. 19. P. 1952. https://doi.org/10.1021/ma00161a029
  27. Developments in Crystalline Polymers – 1. / Ed. Bassett D.C. Dordrecht: Springer, 1982. 279 p. https://doi.org/10.1007/978-94-009-7343-5
  28. Salimi A., Yousefi A.A. // J. Polym. Sci. B. Polym. Phys. 2004. V. 42. № 18. P. 3487. http://dx.doi.org/10.1002/polb.20223
  29. Orudzhev F., Ramazanov S., Sobola D. et al. // Nano Energy. B. 2021. V. 90. P. 106586. http://dx.doi.org/10.1016/j.nanoen.2021.106586
  30. Silva M.P., Costa C.M., Sencadas V. et al. // J. Polym. Res. 2011. V. 18. № 6. P. 1451. http://dx.doi.org/10.1007/s10965-010-9550-x
  31. Keshmirizadeh E., Modarress H., Eliassi A., Mansoori G.A. // Eur. Polym. J. 2003. V. 39. № 6. P. 1141. http://dx.doi.org/10.1016/S0014-3057(02)00373-7
  32. Miri V., Persyn O., Seguela R., Lefebvre J.M. // Eur. Polym. J. 2011. V. 47. № 1. P. 88. http://dx.doi.org/10.1016/j.eurpolymj.2010.09.006
  33. Zhou Y., Liu W., Tan B. et al. // Polymers. 2021. V. 13. № 7. P. 998. http://dx.doi.org/10.3390/polym13070998

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. X-ray diffraction pattern for CoFe2O4 nanoparticles (left) and photos of samples S0, S100, S200, S300 (right).

下载 (188KB)
3. Fig. 2. Field dependence of magnetization for CoFe2O4 and CoFe2O4@OK (left) and PVDF–CoFe2O4@OK at different degrees of stretching (right).

下载 (135KB)
4. Fig. 3. X-ray diffraction patterns (left) and IR spectra (right) for PVDF–CoFe2O4@OK composites with different degrees of stretching. X-ray diffraction pattern of unstretched PVDF–CoFe2O4@OK composite (lower graph).

下载 (274KB)
5. Fig. 4. DSC curves for composites S0, S100, S200, S300.

下载 (99KB)
6. Fig. 5. Deformation curves of composites S0, S100, S200, S300.

下载 (85KB)

版权所有 © Russian Academy of Sciences, 2025