Phase transitions in poly(vinylidene fluoride)-based composite under mechanical stresses
- 作者: Vorontsov P.А.1, Salnikov V.D.1, Savin V.V.1, Vorontsov S.А.1, Panina L.V.1,2, Ershov P.A.1, Rodionova V.V.1
-
隶属关系:
- Kant Baltic Federal University
- National University of Science and Technology “MISIS”
- 期: 卷 70, 编号 1 (2025)
- 页面: 28-34
- 栏目: ДИНАМИКА РЕШЕТКИ И ФАЗОВЫЕ ПЕРЕХОДЫ
- URL: https://rjsvd.com/0023-4761/article/view/686175
- DOI: https://doi.org/10.31857/S0023476125010046
- EDN: https://elibrary.ru/ITVZBQ
- ID: 686175
如何引用文章
详细
In this work the phase transition in composites based on polyvinylidene fluoride and cobalt ferrite nanoparticles under uniaxial stretching at 100, 200 and 300% is investigated. It was found that when the composite is stretched at 300%, there is a maximum increase in the β-phase fraction from 1% for the unstretched sample to 91%, while the electroactive phase increases from 74 to 92%. It was also found that tensile stretching of the composites leads to an increase in tensile strength: from 5.7 to 85.0 MPa. This tensile pattern also contributes to an increase in coercivity, which is due to the increase in the interparticle distance in the composite structure. These results emphasise the importance of mechanical properties and phase changes in polymer composites containing ferrites for their future applications.
全文:

作者简介
P. Vorontsov
Kant Baltic Federal University
编辑信件的主要联系方式.
Email: pavorontsov@kantiana.ru
俄罗斯联邦, Kaliningrad
V. Salnikov
Kant Baltic Federal University
Email: pavorontsov@kantiana.ru
俄罗斯联邦, Kaliningrad
V. Savin
Kant Baltic Federal University
Email: pavorontsov@kantiana.ru
俄罗斯联邦, Kaliningrad
S. Vorontsov
Kant Baltic Federal University
Email: pavorontsov@kantiana.ru
俄罗斯联邦, Kaliningrad
L. Panina
Kant Baltic Federal University; National University of Science and Technology “MISIS”
Email: pavorontsov@kantiana.ru
俄罗斯联邦, Kaliningrad; Moscow
P. Ershov
Kant Baltic Federal University
Email: pavorontsov@kantiana.ru
俄罗斯联邦, Kaliningrad
V. Rodionova
Kant Baltic Federal University
Email: pavorontsov@kantiana.ru
俄罗斯联邦, Kaliningrad
参考
- Saxena P., Shukla P. // Adv. Compos. Hybrid Mater. 2021. V. 4. P. 8. https://doi.org/10.1007/s42114-021-00217-0
- Dallaev R., Pisarenko T., Sobola D. et al. // Polymers (Basel). 2022. V. 14. № 22. P. 1. https://doi.org/10.3390/polym14224793
- Su Y.P., Sim L.N., Li X. et al. // J. Memb. Sci. 2021. V. 620. P. 118818. https://doi.org/10.1016/j.memsci.2020.118818
- Bichurin M., Petrov R., Sokolov O. et al. // Sensors. 2021. V. 21. № 18. P. 6232. https://doi.org/10.3390/s21186232
- Narita F., Fox M. // Adv. Eng. Mater. 2018. V. 20. № 5. P. 1. https://doi.org/10.1002/adem.201700743
- Alibakhshi H., Esfahani H., Sharifi E. // Ceram. Int. 2024. V. 50. № 5. P. 8017. https://linkinghub.elsevier.com/retrieve/pii/S0272884223040506
- Liu F., Hashim N.A., Liu Y., Abed R. // J. Memb. Sci. 2011. V. 375. № 1–2. P. 1. http://dx.doi.org/10.1016/j.memsci.2011.03.014
- Lovinger A.J. // Science. 1983. V. 220. № 4602. P. 1115. https://doi.org/10.1126/science.220.4602.1115
- Pereira N., Lima A., Lanceros-Mendez S., Martins P. // Materials. 2020. V. 13. № 18. P. 4033. https://doi.org/10.3390/ma13184033
- Omelyanchik A., Antipova V., Gritsenko Ch. et al. // Nanomaterials. 2021. V. 11. № 5. P. 1154. https://doi.org/10.3390/nano11051154
- Antipova V., Omelyanchik A., Sobolev K. et al. // Nanobiotechnology Reports. 2023. V. 18. Suppl. 1. P. S186. https://doi.org/10.1134/S2635167623600967
- Koç M., Demirci C., Parali L. et al. // J. Mater. Sci. Mater. Electron. 2022. V. 33. № 10. P. 8048. https://doi.org/10.1007/s10854-022-07956-w
- Cozza E.S., Monticelli O., Marsano E., Cebe P. // Polym. Int. 2013. V. 62. № 1. P. 41. http://dx.doi.org/10.1002/pi.4314
- Sharma M., Madras G., Bose S. // Phys. Chem. Chem. Phys. 2014. V. 16. № 28. P. 14792. http://dx.doi.org/10.1039/c4cp01004c
- Chen B., Yuan M., Ma R. et al. // Chem. Eng. J. 2022. V. 433. P. 134475. http://dx.doi.org/10.1016/j.cej.2021.134475
- Jovanović S., Spreitzer M., Otoničar M. et al. // J. Alloys Compd. 2014. V. 589. P. 271. http://dx.doi.org/10.1016/j.jallcom.2013.11.217
- Botvin V., Fetisova A., Mukhortova Y. et al. // Polymers. 2023. V. 15. № 14. P. 3135. http://dx.doi.org/10.3390/polym15143135
- Terzić I., Meereboer N.L., Mellema H.H. et al. // J. Mater. Chem. C. 2019. V. 7. № 4. P. 968. https://doi.org/10.1039/C8TC05017A
- Ribeiro C., Costa C., Correia D. et al. // Nat. Protoc. 2018. V. 13. № 4. P. 681. http://dx.doi.org/10.1038/nprot.2017.157
- Sayyar S., Aslibeiki B., Asgari A. // Phys. Appl. Mater. 2022. V. 2. P. 165. https://doi.org/10.22075/ppam.2022.29079.1047
- Stoner B., Wohlfarth P.A. // Phys. Dep. 1948. V. 250. № 826. P. 599. http://dx.doi.org/10.1098/rsta.1948.0007
- Salnikov V.D., Aga-Tagieva S., Kolesnikova V. et al. // J. Magn. Magn. Mater. 2024. V. 595. P. 171498. http://dx.doi.org/10.1016/j.jmmm.2023.171498
- Zhang L., Li S., Zhu Z. et al. // Adv. Funct. Mater. 2023. V. 33. № 38. P. 2301302. http://dx.doi.org/10.1002/adfm.202301302
- Satapathy S., Pawar S., Gupta P.K., Varma K. // Bull. Mater. Sci. 2011. V. 34. № 4. P. 727. http://dx.doi.org/10.1007/s12034-011-0187-0
- Cai X., Lei T., Sun D., Lin L. // RSC Adv. 2017. V. 7. № 25. P. 15382. http://dx.doi.org/10.1039/C7RA01267E
- Peters A., Candau S.J. // Macromolecules. 1986. V. 19. P. 1952. https://doi.org/10.1021/ma00161a029
- Developments in Crystalline Polymers – 1. / Ed. Bassett D.C. Dordrecht: Springer, 1982. 279 p. https://doi.org/10.1007/978-94-009-7343-5
- Salimi A., Yousefi A.A. // J. Polym. Sci. B. Polym. Phys. 2004. V. 42. № 18. P. 3487. http://dx.doi.org/10.1002/polb.20223
- Orudzhev F., Ramazanov S., Sobola D. et al. // Nano Energy. B. 2021. V. 90. P. 106586. http://dx.doi.org/10.1016/j.nanoen.2021.106586
- Silva M.P., Costa C.M., Sencadas V. et al. // J. Polym. Res. 2011. V. 18. № 6. P. 1451. http://dx.doi.org/10.1007/s10965-010-9550-x
- Keshmirizadeh E., Modarress H., Eliassi A., Mansoori G.A. // Eur. Polym. J. 2003. V. 39. № 6. P. 1141. http://dx.doi.org/10.1016/S0014-3057(02)00373-7
- Miri V., Persyn O., Seguela R., Lefebvre J.M. // Eur. Polym. J. 2011. V. 47. № 1. P. 88. http://dx.doi.org/10.1016/j.eurpolymj.2010.09.006
- Zhou Y., Liu W., Tan B. et al. // Polymers. 2021. V. 13. № 7. P. 998. http://dx.doi.org/10.3390/polym13070998
补充文件
