Synthesis of nickel nanodiscs and modification of shells of polyelectrolyte microcapsules with them

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Magnetic nickel nanoparticles, especially of anisotropic shape, are increasingly attracting the attention of researchers in the field of biomedicine. In this work, magnetic nickel nanodiscs have been synthesized to modify the shells of polyelectrolyte capsules in order to further create new agents for theranostics based on such a nanocomposite system. To obtain nickel nanoparticles in the form of nanodiscs, the method of alternating electrodeposition of metals in the pores of a polymer track membrane was used. Nanowires with alternating layers of copper and nickel were synthesized, and nickel nanodiscs were isolated by selective etching of copper. The magnetic properties of the nanodiscs were investigated by vibrational magnetometry of an array of nanowires in a polymer matrix. The selected disks were studied by dynamic light scattering, electron microscopy, and small-angle X-ray scattering. The possibility of including nickel nanodiscs in the shells of polyelectrolyte capsules by adsorption on a polycation layer followed by application of a polyanion is demonstrated.

全文:

受限制的访问

作者简介

V. Sarukhanova

National Research Center “Kurchatov Institute”

编辑信件的主要联系方式.
Email: saruhanova.vika@yandex.ru
俄罗斯联邦, Moscow

I. Doludenko

National Research Center “Kurchatov Institute”

Email: saruhanova.vika@yandex.ru
俄罗斯联邦, Moscow

D. Khairetdinova

National Research Center “Kurchatov Institute”; National University of Science and Technology “MISIS”

Email: saruhanova.vika@yandex.ru
俄罗斯联邦, Moscow; Moscow

V. Volkov

National Research Center “Kurchatov Institute”

Email: saruhanova.vika@yandex.ru
俄罗斯联邦, Moscow

A. Bakirov

National Research Center “Kurchatov Institute”; Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences

Email: saruhanova.vika@yandex.ru
俄罗斯联邦, Moscow; Moscow

Y. Grigoriev

National Research Center “Kurchatov Institute”

Email: saruhanova.vika@yandex.ru
俄罗斯联邦, Moscow

D. Khmelenin

National Research Center “Kurchatov Institute”

Email: saruhanova.vika@yandex.ru
俄罗斯联邦, Moscow

A. Mikheev

National Research Center “Kurchatov Institute”

Email: saruhanova.vika@yandex.ru
俄罗斯联邦, Moscow

T. Bukreeva

National Research Center “Kurchatov Institute”

Email: saruhanova.vika@yandex.ru
俄罗斯联邦, Moscow

参考

  1. Rezaei B., Yari P., Sanders S.M. et al. // Small. 2024. V. 20. Р. 2304848. https://doi.org/10.1002/smll.202304848
  2. Ullah Khan A., Chen L., Ge G. // Inorg. Chem. Commun. 2021. V. 134. Р. 108995. https://doi.org/10.1016/j.inoche.2021.108995
  3. Materón E.M., Miyazaki C.M., Carr O. et al. // Appl. Surf. Sci. Adv. 2021. V. 6. Р. 100163. https://doi.org/10.1016/j.apsadv.2021.100163
  4. Nuru-Deen Jaji, Hooi Ling Lee, Mohd Hazwan Hussin et al. // Nanotechnol. Rev. 2020. V. 9. P. 1456. https://doi.org/10.1515/ntrev-2020-0109
  5. Bian Z., Das S., Wai M.H. et al. // ChemPhysChem. 2017. V. 18. № 22. P. 3117. https://doi.org/10.1002/cphc.201700529
  6. Gahlawat G., Choudhury A.R. // RSC Adv. 2019. V. 9. № 23. P. 12944. https://doi.org/10.1039/c8ra10483b
  7. Sudhasree S., Shakila Banu A., Brindha P., Kurian G.A. // Toxicol. Env. Chem. 2014. V. 96 (5). P. 743. https://doi.org/10.1080/02772248.2014.923148
  8. Makarov V., Love A., Sinitsyna O. et al. // Acta Nat. 2014. V. 6. № 1. P. 20. https://doi.org/10.32607/20758251-2014-6-1-35-44
  9. Magnetic Nano- and Microwires: Design, Synthesis, Properties and Applications / Ed. Vazquez M. Elsevier, 2015. P. 962. https://doi.org/10.1016/b978-0-08-102832-2.09989-8
  10. Жигалина О.М., Долуденко И.М., Хмеленин Д.Н. и др. // Кристаллография. 2018. Т. 63. № 3. С. 455. https://doi.org/10.1134/S1063774518030379
  11. Загорский Д.Л., Долуденко И.М., Черкасов Д.А. и др. // ФТТ. 2019. Т. 61. Вып. 9. С. 1682. https://doi.org/10.1134/S1063783419090282
  12. Yao H., Xie L., Cheng Y. et al. // Mater. Des. 2017. V. 123. № 5. P. 165. https://doi.org/10.1016/j.matdes.2017.03.041
  13. Долуденко И.М., Михеев А.В., Бурмистров И.А. и др. // ЖТФ. 2020. Т. 90. Вып. 9. С. 1435. https://doi.org/10.1134/S1063784220090121
  14. Kruk T., Chojnacka-Górka K., Kolasińska-Sojka M., Zapotoczny S. // Adv. Colloid Interface Sci. 2022. V. 310. Р. 102773. https://doi.org/10.1016/j.cis.2022.102773
  15. Timin A.S., Gao H., Voronin D.V. et al. // Adv. Mater. Interfaces. 2017. V. 4. № 1. P. 1600338. https://doi.org/10.1002/admi.201600338
  16. Gorin D.A., Portnov S.A., Inozemtseva O.A. et al. // Phys. Chem. Chem. Phys. 2008. V. 10. P. 6899. https://doi.org/10.1039/b809696a
  17. Burmistrov I.A., Veselov M.M., Mikheev A.V. et al. // Pharmaceutics. 2022. V. 14. Р. 65. https://doi.org/10.3390/pharmaceutics14010065
  18. Lyubutin I.S., Starchikov S.S., Bukreeva T.V. et al. // Mater. Sci. Eng. C. 2014. V. 45. P. 225. https://doi.org/10.1016/j.msec.2014.09.017
  19. Sukhorukov G.B., Volodkin D.V., Gunther A.M. et al. // J. Mater. Chem. 2004. V. 14. P. 2073. https://doi.org/10.1039/B402617A
  20. Peters G.S., Zakharchenko O.A., Konarev P.V. et al. // Nucl. Instrum. Methods Phys. Res. А. 2019. V. 945. Р. 162616. https://doi.org/10.1016/ 162616
  21. Hammersley A.P. // J. Appl. Cryst. 2016. V. 49. P. 646. https://doi.org/10.1107/S1600576716000455
  22. Manalastas-Cantos K., Konarev P.V., Hajizadeh N.R. et al. // J. Appl. Cryst. 2021. V. 54. P. 343. https://doi.org/10.1107/S1600576720013412
  23. Svergun D.I., Konarev P.V., Volkov V.V. et al. // J. Chem. Phys. 2000. V. 113. P. 1651. https://doi.org/10.1063/1.481954
  24. Бизяев Д.А., Хайретдинова Д.Р., Загорский Д.Л. и др. // Физика металлов и металловедение. 2023. Т. 124. С. 717. https://doi.org/10.31857/S0015323023600545
  25. Anikin A.A., Shumskaya E.E., Bedin S.A. et al. // Bull. Russ. Acad. Sci.: Phys. 2024. V. 88. № 4. P. 1010. https://doi.org/10.1134/S1062873824706998

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Hysteresis loops for nanowire samples with a given nickel layer thickness of 50 nm for two field directions: in the plane of the sample (1) and parallel to its normal (2).

下载 (153KB)
3. Fig. 2. Distribution of synthesized particles by size according to DLS data.

下载 (69KB)
4. Fig. 3. TEM image of nickel nanoparticles (a) and their image obtained using a ring dark-field detector (b).

下载 (203KB)
5. Fig. 4. Volume distributions of particles by the radii of inhomogeneities in the spherical approximation of their shape according to SAXS data (a), particle concentration in suspension: 0.05 (1), 0.1 (2), 0.2 (3) μg/ml. Solid lines correspond to the distribution of the component with a larger size, dashed lines – with a smaller size. Comparison of experimental data with model intensities calculated for the distributions in the figure (a) taking into account the not shown distributions of fractions of small inhomogeneities (b). The intensity curves are shifted vertically for better visualization.

下载 (165KB)
6. Fig. 5. TEM image of microcapsules modified with nanodisks (a) and their image obtained using a ring dark-field detector (b), as well as distribution maps of nickel (c), carbon (d), oxygen (g), and sulfur (e).

下载 (334KB)

版权所有 © Russian Academy of Sciences, 2025