Microstructural changes in magnesium alloy Mg-Zn-REE after irradiation with nanosecond laser pulses

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The article presents the results of studies of the structure and composition of the surface and near-surface layers of the Mg–Y–Zn–Nd–Yb–Zr alloy system with a long-period phase after irradiation with nanosecond laser pulses using electron microscopy and energy-dispersive X-ray microanalysis. It is shown that in a two-phase alloy, a layer of nanocrystalline MgO with a thickness from 5 nm to hundreds of nm is formed on the surface in the α-Mg matrix region. A recrystallized layer of columnar crystallites with a thickness of about 1 μm and a lateral size of 0.2–1 μm with inclusions of cubic MgO is formed under it. In the area of the intermetallic compound (phase Mg12YZn–REE type 18R), a three-layer amorphous-crystalline structure is formed: an amorphous layer 15–20 nm thick on the surface, under it a crystalline layer of columnar crystallites 0.1–0.3 μm thick and with lateral dimensions of 0.1–0.5 μm, then an amorphous layer of intermetallic compound about 1 μm thick.

全文:

受限制的访问

作者简介

A. Vasiliev

National Research Center “Kurchatov Institute”; Togliatti State University; Moscow Institute of Physics and Technology (National Research University)

编辑信件的主要联系方式.
Email: a.vasiliev56@gmail.com
俄罗斯联邦, Moscow; Togliatti; Dolgoprudny

M. Krishtal

Togliatti State University

Email: a.vasiliev56@gmail.com
俄罗斯联邦, Togliatti

Yu. Grigoriev

National Research Center “Kurchatov Institute”

Email: a.vasiliev56@gmail.com
俄罗斯联邦, Moscow

A. Polunin

Togliatti State University

Email: a.vasiliev56@gmail.com
俄罗斯联邦, Togliatti

A. Rodin

National University of Science and Technology MISIS

Email: a.vasiliev56@gmail.com
俄罗斯联邦, Moscow

Yu. Kolobov

Togliatti State University; Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: a.vasiliev56@gmail.com
俄罗斯联邦, Togliatti; Chernogolovka, Moscow Region

参考

  1. Фролов К.В. Машиностроение: энциклопедия. Т. II-3. Цветные металлы и сплавы. Композиционные металлические материалы. М.: Машиностроение, 2001. 879 c.
  2. Альтман М.Б., Антипова А.П., Блохина А.П. и др. Металловедение магния и его сплавов. Области применения. М.: Металлургия, 1978. Т. 2. 237 c.
  3. Петров А.А., Сперанский К.А. // Тр. ВИАМ. 2021. № 10 (104). С. 12. https://doi.org/10.18577/2307-6046-2021-0-10-12-27
  4. Мостяев И.В. // Тр. ВИАМ. 2015. № 7. С. 8. https://doi.org/10.18577/2307-6046-2015-0-7-3-3
  5. Фролов А.В., Мухина И.Ю., Леонов А. А. и др. // Тр. ВИАМ. 2016. № 3 (39). С. 23. https://doi.org/10.18577/2307-6046-2016-0-3-3-3
  6. Поповски Ю., Папиров И.И., Шокуров В.С. и др. Патент RU2418878C2. Магниевый сплав с улучшенным сочетанием механических и коррозионных характеристик. 2010.
  7. Лукьянова Е.А. Дис. “Исследование магниевых сплавов с редкоземельными металлами для создания новых легких конструкционных материалов”… канд. тех. наук. М.: ИМЕТ РАН, 2014.
  8. Arun K.S., Rajesh R.J., Jithu K.G. et al. // J. Mater. Eng. Perform. 2022. V. 32. P. 2840. https://doi.org/10.1007/s11665-022-07213-5
  9. Jiang P., Blawert C., Zheludkevich M.L. // Corros. Mater. Degrad. 2020. V. 1. P. 92. https://doi.org/10.3390/cmd1010007
  10. Yamasaki M., Hayashi N., Izumi S., Kawamura Y. // Corrosion Sci. 2009. V. 49. P. 255. https://doi.org/10.1016/j.corsci.2006.05.017
  11. Wan D., Sun Y., Xue Y. et al. // China Foundry. 2024. V. 21. № 11. P. 634. https://doi.org/10.1007/s41230-024-3174-y
  12. Abdel Gawad M., Usman C.A., Shunmugasamy V.C. et al. // J. Magnes. Alloy. 2022. V. 10. № 6. P. 1542. https://doi.org/10.1016/j.jma.2021.11.025
  13. Li C.Q., Xu D.K., Zeng Z.R. et al. // Mater. Des. 2017. V. 121. P. 430. https://doi.org/10.1016/j.matdes.2017.02.078
  14. Pałgan D., Dobkowska A., Zielińska A. et al. // Crystals. 2022. V. 12. P. 1723. https://doi.org/10.3390/cryst12121723
  15. Wang Y., Zhang Y., Wang P. et al. // J. Mater. Res. Technol. 2020. V. 9. № 3. P. 7087. https://doi.org/10.1016/j.jmrt.2020.05.048
  16. Zhang S., Jiang J., Zou X. et al. // Front. Chem. 2022. V. 10. P. 1. https://doi.org/10.3389/fchem.2022.999630
  17. Wu S., Huang J., Fang J. et al. // Surf. Coat. Technol. 2023. V. 470. Р. 129870. https://doi.org/10.1016/j.surfcoat.2023.129870
  18. Li L., Yan D., Zou T. et al. // J. Alloys Compd. 2024. V. 1004. P. 175728. https://doi.org/10.1016/j.jallcom.2024.175728
  19. Божко С.А., Манохин С.С., Колобова Е.Г., Колобов Ю.Р. Патент RU 2691154 C1. Способ формирования коррозионно-устойчивого слоя на поверхности магниевых деформируемых сплавов. 11.06.2019.
  20. Cheretaeva A.O., Glukhov P.A., Shafeev M.R. et al. // Chimica Techno Acta. 2023. V. 10. № 2. 202310212. https://doi.org/10.15826/chimtech.2023.10.2.12
  21. Schimmel H.G., Huot J., Chapon L.C. et al. // J. Am. Chem. Soc. 2005. V. 127. № 41. P. 14348. https://doi.org/10.1021/ja051508a
  22. Tsirel'son V.G., Avilov A.S., Abramov et al. // Acta Cryst. B. 1998. V. 54. P. 8. https://doi.org/10.1107/S0108768197008963
  23. Itoi T., Seimiya T., Kawamura Y., Hirohashi M. // Scripta Mater. 2004. V. 51. № 2. Р. 107. https://doi.org/10.1016/j.scriptamat.2004.04.003
  24. Петров А.А., Сперанский К.А. // Тр. ВИАМ. 2021. № 11 (105). С. 12. https://doi.org/10.18577/2307-6046-2021-0-11-12-24
  25. Li X.Y., Guo Y.F., Mao Y. et al. // Int. J. Plast. 2022. V. 158. P. 103437. https://doi.org/10.1016/j.ijplas.2022.103437
  26. Zhao S., Xu Y., Lin X. et al. // J. Mater. Res. Technol. 2022. V. 18. P. 461. https://doi.org/10.1016/j.jmrt.2022.02.066
  27. Malik A., Yangwei W., Huanwu C. et al. // Vacuum. 2019. V. 168. P. 108810. https://doi.org/10.1016/j.vacuum.2019.108810
  28. Malik A., Yangwei W., Huanwu C. et al. // J. Mater. Res. Technol. 2019. V. 8. P. 3475. https://doi.org/10.1016/j.jmrt.2019.06.018
  29. Busk R.S. // JOM. 1950. V. 2. P. 1460. https://doi.org/10.1007/BF03399173

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. SEM image of the sample surface (a) obtained in the backscattered electron mode and element distribution maps for Mg (b), Y (c), Zn (d), Zr (d), Nd (f), and Yb (g).

下载 (207KB)
3. Fig. 2. SEM image of a crater obtained in the secondary electron mode; the rectangle marks the region from which the lamella was prepared for TEM/STEM/EDX studies.

下载 (257KB)
4. Fig. 3. Bright-field TEM (a) and STEM images (b) of the near-surface regions A, B, and C of the sample, exhibiting different contrast, and their electron diffraction patterns (c–d). Pt(e-beam) and Pt(i-beam) are the technological Pt layers formed by electron and ion beams. The arrows indicate the supposed boundary of the layer with the Mg matrix recrystallized as a result of the laser beam action. Arrows t point to the twin, and sf – to the stacking faults.

下载 (560KB)
5. Fig. 4. Bright-field TEM image of region B.

下载 (337KB)
6. Fig. 5. HRTEM image of the inclined twin boundary (arrows t indicate the boundary outcrops on the lamella surface) and the stacking fault (sf). The insets show the two-dimensional Fourier spectra of two components of the twin.

下载 (220KB)
7. Fig. 6. The near-surface layer of region A: a – bright-field TEM image of the region with the porous structure of the crater wall; b – elemental EDX map of the distribution of Pt (blue), O (red), Mg (green); c, d – HRTEM images of the porous region, the inset is the two-dimensional Fourier spectrum with two rings corresponding to the reflections 111 and 002 MgO.

下载 (1MB)
8. Fig. 7. Bright-field TEM image of the surface and near-surface layer of the Mg–Zn–REE intermetallic compound (B and C are crystalline and amorphous regions) (a) and HRTEM image of the region highlighted by a rectangle (b), inset – two-dimensional Fourier spectra from the upper part of the image and from the lower one, corresponding to α-Mg with the zone axis [54 10]. Dark-field STEM images of the near-surface region (c, d) and EDX maps of the distribution of elements in the near-surface layer (c). Results of EDX scanning (d) along the line (g) and the corresponding scanning region (e)

下载 (748KB)

版权所有 © Russian Academy of Sciences, 2025