Evolution of the magnetic domain structure in iron borate FeBO3 single crystals in external fields, studied by X-ray diffraction and magneto-optical techniques

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

An X-ray diffraction technique using a synchrotron radiation source has been developed and implemented to study the evolution processes of magnetic domain structure in external fields. High-quality single crystals of iron borate FeBO3 were chosen as model objects. A series of X-ray and magneto-optical experiments were performed to investigate the evolution of the magnetic domain structure in weak external magnetic fields. It has been established that the movement of domain walls leads to a stepwise broadening of the diffraction reflection curves of FeBO3 crystals. It is demonstrated that X-ray diffraction studies of the magnetic domain structure can be useful for characterizing magnetic materials in which direct observation of domains by magneto-optical and electron-microscopic methods is difficult.

Texto integral

Acesso é fechado

Sobre autores

N. Snegirev

National Research Center “Kurchatov Institute”

Autor responsável pela correspondência
Email: niksnegir@yandex.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Rússia, Moscow

A. Kulikov

National Research Center “Kurchatov Institute”

Email: niksnegir@yandex.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Rússia, Moscow

I. Lyubutin

National Research Center “Kurchatov Institute”

Email: niksnegir@yandex.ru

Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics

Rússia, Moscow

A. Fedorova

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Email: niksnegir@yandex.ru
Rússia, Moscow

A. Fedorov

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Email: niksnegir@yandex.ru
Rússia, Moscow

M. Logunov

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences

Email: niksnegir@yandex.ru
Rússia, Moscow

S. Yagupov

Institute of Physics and Technology, Vernadsky Crimean Federal University

Email: niksnegir@yandex.ru
Rússia, Simferopol

M. Strugatsky

Institute of Physics and Technology, Vernadsky Crimean Federal University

Email: niksnegir@yandex.ru
Rússia, Simferopol

Bibliografia

  1. Weiss P. // J. Phys. Radium. 1907. V. 6. P. 661.
  2. В1осh F. // Z. Phys. 1932. V. 74. P. 295.
  3. Landau L.D., Lifshitz E.M. Course of theoretical physics. Elsevier, 2013. 562 p.
  4. Néel L. // Cahiers de physique. 1944. V. 25. P. 21.
  5. Вонсовский С.В. Магнетизм. М.: Наука, 1971. 1032 c.
  6. Hubert A., Shafer R. Magnetic domains. The Analysis of Magnetic Microstructures. Springer, 2009. 685 p.
  7. Logunov M.V., Safonov S.S., Fedorov A.S. et al. // Phys. Rev. Appl. 2021. V. 15. P. 064024. https://doi.org/10.1103/PhysRevApplied.15.064024
  8. Snegirev N., Kulikov A., Lyubutin I. et al. // JETP Lett. 2024. V. 119. № 6. P. 464.
  9. Snegirev N., Kulikov A., Lyubutin I.S. et al. // Cryst. Growth Des. 2023. V. 23. P. 5883. https://doi.org/10.1134/S0021364024600484
  10. Lyubutin I.S., Snegirev N.I., Chuev M.A. et al. // J. Alloys Compd. 2022. V. 906. P. 164348. https://doi.org/10.1016/j.jallcom.2022.164348
  11. Snegirev N., Lyubutin I., Kulikov A. et al. // J. Alloys Compd. 2022. V. 889. P. 161702. https://doi.org/10.1016/j.jallcom.2021.161702
  12. Seavey M.H. // Solid State Commun. 1972. V. 10. P. 219. https://doi.org/10.1016/0038-1098(72)90385-7
  13. Joubert J.C., Shirk T., White W.B., Roy R. // Mater. Res. Bull. 1968. V. 3. P. 671. https://doi.org/10.1016/0025-5408(68)90116-5
  14. Pernet M., Elmale D., Joubert J.C. // Solid State Commun. 1970. V. 8. P. 1583.
  15. Дорошев В.Д., Kовтун Н.М., Лукин С.Н. и др. // Письма в ЖЭТФ. 1979. Т. 29. № 5. С. 286.
  16. Nemec P., Fiebig M., Kampfrath T., Kimel A.V. // Nature Phys. 2019. V. 14. P. 229. https://doi.org/10.48550/arXiv.1705.10600
  17. Xionga D., Jianga Y., Shi K. et al. // Fundamental Res. 2022. V. 2. P. 522. https://doi.org/10.1016/j.fmre.2022.03.016
  18. Smirnova E.S., Snegirev N.I., Lyubutin I.S. et al. // Acta Cryst. B. 2020. V. 76. № 6. P. 1100. https://doi.org/10.1107/S2052520620014171
  19. Yagupov S., Strugatsky M., Seleznyova K. et al. // Cryst. Growth Des. 2018. V. 18. P. 7435. https://doi.org/10.1021/acs.cgd.8b01128
  20. Bowen D.K., Tanner B.K. High resolution X-ray diffractometry and topography Title. London: CRC press, 1998. 251 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic diagram of the X-ray diffraction experiment: 1 - synchrotron radiation source, 2 - cooled double-crystal monochromator, 3 - diaphragm (X-ray slits), 4 - multicircle goniometer, 5 - studied FeBO3 single crystal in a magnetic field Hex created by two coaxial electromagnetic coils, 6 - detector.

Baixar (54KB)
3. Fig. 2. Schematic diagram of the magneto-optical experiment: 1 - optical axis, 2 - coaxial electromagnetic coils, 3 - studied crystal, 4 - diaphragm. The callouts show the angular relationships between the optical axis, the plane of the studied crystal and the vector of the external magnetic field strength Hex. In case (a), the plane of the studied crystal and the axes of the electromagnetic coils are tilted from the optical axis by an angle φ, in case (b), only the studied crystal is tilted by an angle φ from the optical axis.

Baixar (129KB)
4. Fig. 3. Magnetization curves of a FeBO3 single crystal obtained in the course of magneto-optical measurements: a – the plane of the crystal under study and the axes of the electromagnetic coils are deviated from the optical axis by an angle of φ, b – only the crystal under study is deviated from the optical axis by an angle of φ (Fig. 2). Curves 1, 2 correspond to the process of magnetization of the crystal at different polarities of the current on the electromagnetic coils.

Baixar (105KB)
5. Fig. 4. Domain structure of FeBO3 during crystal magnetization according to magneto-optical measurements. The gradation of shades shows the regions of the crystal with different MO contrast.

Baixar (287KB)
6. Fig. 5. Diffraction reflection curves 300 of a FeBO3 crystal obtained when the crystal is exposed to external magnetic fields (a). Dependence of the half-width (b) and the integral intensity of the DRC (c) on the magnitude of the external magnetic field.

Baixar (222KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025