Copper ions’ influence on thiocyonate dehydrogenase packing and conformation in a crystal
- Autores: Varfolomeeva L.А.1, Solovieva A.Y.1, Shipkov N.S.1, Dergousova N.I.1, Minyaev М.E.2, Boyko K.M.1, Tikhonova T.V.1, Popov V.O.1
-
Afiliações:
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
- N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences
- Edição: Volume 70, Nº 1 (2025)
- Páginas: 10-17
- Seção: STRUCTURE OF MACROMOLECULAR COMPOUNDS
- URL: https://rjsvd.com/0023-4761/article/view/686173
- DOI: https://doi.org/10.31857/S0023476125010027
- EDN: https://elibrary.ru/IUBQXT
- ID: 686173
Citar
Resumo
The copper-containing enzyme thiocyanate dehydrogenase (TcDH) catalyzes oxidation of thiocyanate to cyanate and elemental sulfur. To date, the spatial structures of two bacterial TcDHs (tpTcDH and pmTcDH) are known. Both enzymes are dimers and contain a trinuclear copper center in the active site. The important difference between these enzymes is that in a crystal, the subunits of the tpTcDH dimer are in identical conformations, while the subunits of the pmTcDH dimer are in different conformations: closed and open. To clarify the role of copper ions in changing the TcDH conformation, the structure of the apo-form of pmTcDH was established, in which both subunits of the dimer had the closed conformation. Soaking of apo-form crystals with copper led to the restoring of the trinuclear center and the conformational rearrangements of the subunits.
Texto integral

Sobre autores
L. Varfolomeeva
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: l.varfolomeeva@fbras.ru
Rússia, Moscow
A. Solovieva
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: l.varfolomeeva@fbras.ru
Rússia, Moscow
N. Shipkov
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: l.varfolomeeva@fbras.ru
Rússia, Moscow
N. Dergousova
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: l.varfolomeeva@fbras.ru
Rússia, Moscow
М. Minyaev
N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences
Email: l.varfolomeeva@fbras.ru
Rússia, Moscow
K. Boyko
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: l.varfolomeeva@fbras.ru
Rússia, Moscow
T. Tikhonova
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: l.varfolomeeva@fbras.ru
Rússia, Moscow
V. Popov
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: l.varfolomeeva@fbras.ru
Rússia, Moscow
Bibliografia
- Sorokin D.Y., Tourova T.P., Lysenko A.M. et al. // Int. J. Syst. Evol. Microbiol. 2002. V. 52. Pt 2. P. 657. http://dx.doi.org/10.1099/00207713-52-2-657
- Slobodkina G.B., Merkel A.Y., Novikov A.A. et al. // Extremophiles. 2020. V. 24. № 1. P. 177. http://dx.doi.org/10.1007/s00792-019-01145-0
- Tikhonova T.V., Sorokin D.Y., Hagen W.R. et al. // Proc. Natl. Acad. Sci. USA. 2020. V. 117. № 10. P. 5280. http://dx.doi.org/10.1073/pnas.1922133117
- Varfolomeeva L.A., Shipkov N.S., Dergousova N.I. et al. // Int. J. Biol. Macromol. 2024. P. 135058. http://dx.doi.org/10.1016/j.ijbiomac.2024.135058
- Varfolomeeva L.A., Solovieva A.Y., Shipkov N.S. et al. // Crystals. 2022. V. 12. P. 1787. http://dx.doi.org/10.3390/cryst12121787
- Varfolomeeva L.A., Polyakov K.M., Komolov A.S. et al. // Crystallography Reports. 2023. V. 68. № 6. P. 886. http://dx.doi.org/10.1134/s1063774523600990
- McPherson A. // Methods Mol. Biol. 2017. V. 1607. P. 17. http://dx.doi.org/10.1007/978-1-4939-7000-1_2
- Atakisi H., Moreau D.W., Thorne R.E. // Acta Cryst. D. 2018. V. 74. № 4. P. 264. http://dx.doi.org/10.1107/S2059798318000207
- Kishan K.V., Zeelen J.P., Noble M.E. et al. // Protein Sci. 1994. V. 3. № 5. P. 779. http://dx.doi.org/10.1002/pro.5560030507
- Kovari Z., Vas M. // Proteins. 2004. V. 55. № 1. P. 198. http://dx.doi.org/10.1002/prot.10469
- Hakansson K., Doherty A.J., Shuman S., Wigley D.B. // Cell. 1997. V. 89. № 4. P. 545. http://dx.doi.org/10.1016/s0092-8674(00)80236-6
- Lamzin V.S., Dauter Z., Popov V.O. et al. // J. Mol. Biol. 1994. V. 236. № 3. P. 759. http://dx.doi.org/10.1006/jmbi.1994.1188
- Kabsch W. // Acta Cryst. D. 2010. V. 66. № 2. P. 125. http://dx.doi.org/10.1107/S0907444909047337
- Agirre J., Atanasova M., Bagdonas H. et al. // Acta Cryst. D. 2023. V. 79. № 6. P. 449. http://dx.doi.org/10.1107/S2059798323003595
- Vagin A., Teplyakov A. // Acta Cryst. D. 2010. V. 66. № 1. P. 22. http://dx.doi.org/10.1107/S0907444909042589
- Murshudov G.N., Skubak P., Lebedev A.A. et al. // Acta Cryst. D. 2011. V. 67. № 4. P. 355. http://dx.doi.org/10.1107/S0907444911001314
- Emsley P., Lohkamp B., Scott W.G., Cowtan K. // Acta Cryst. D. 2010. V. 66. № 4. P. 486. http://dx.doi.org/10.1107/S0907444910007493
- Krissinel E., Henrick K. // J. Mol. Biol. 2007. V. 372. № 3. P. 774. http://dx.doi.org/10.1016/j.jmb.2007.05.022
- Kabsch W. // Acta Cryst. A. 1976. V. 32. № 5. P. 922. http://dx.doi.org/10.1107/S0567739476001873
- Appel M.J., Meier K.K., Lafrance-Vanasse J. et al. // Proc. Natl. Acad. Sci. U S A. 2019. V. 116. № 12. P. 5370. http://dx.doi.org/10.1073/pnas.1818274116
- Osipov E.M., Polyakov K.M., Tikhonova T.V. et al. // Acta Cryst. F. 2015. V. 71. № 12. P. 1465. http://dx.doi.org/10.1107/S2053230X1502052X
Arquivos suplementares
