Study of Pb0.5Cd0.25Lu0.25F2.25 fluorite solid solution with congruent melting nature

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

For the first time, the optical, mechanical and conductive properties of the Pb0.5Cd0.25Lu0.25F2.25 crystalline matrix were studied in comparison with the crystals of the initial single-component fluorides. The short-wavelength transparency boundary of the three-component mixed crystal is determined by the presence of PbF2 in its composition, the IR boundary is naturally shifted up to 15 μm due to the presence of LuF3 in the composition. The refractive index of the studied solid solution n = 1.6889 on the λ = 0.6328 μm wavelength is lower than that of the PbF2 crystal due to the introduction of less polarizable components CdF2 and LuF3. For the three-component crystal, significant strengthening is observed, the microhardness HV = 2.5 GPa, which exceeds the hardness values of PbF2 and CdF2 by almost 40%. The electrical conductivity of Pb0.5Cd0.25Lu0.25F2.25 sdc at 500 K is 5.5 × 10−5 S/cm, which corresponds to the conductivity level of solid solutions M1−xLuxF2+x (M = Ca, Sr, Ba). The studied multicomponent fluoride material can be a promising crystalline medium for various photonic applications.

Толық мәтін

Рұқсат жабық

Авторлар туралы

I. Buchinskaya

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Хат алмасуға жауапты Автор.
Email: buchinskayii@gmail.com
Ресей, Moscow

М. Koldaeva

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: buchinskayii@gmail.com
Ресей, Moscow

N. Sorokin

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: buchinskayii@gmail.com
Ресей, Moscow

A. Kulikov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: buchinskayii@gmail.com
Ресей, Moscow

D. Karimov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: buchinskayii@gmail.com
Ресей, Moscow

Әдебиет тізімі

  1. Mouchovski J.T., Temelkov K.A., Vuchkov N.K. // Prog. Cryst. Growth Characteriz. Mater. 2011. V. 57. Р. 1. https://doi.org/10.1016/J.PCRYSGROW.2010.09.003
  2. Fedorov P.P., Osiko V.V. // Bulk Crystal Growth of Electronic, Optical and Optoelectronic Materials / Eds. Capper P. Hoboken; NJ; USA: John Wiley Sons, Ltd. 2005. P. 339. https://doi.org/10.1002/9780470012086.ch11
  3. Каримов Д.Н., Комарькова О.Н., Сорокин Н.И. и др. // Кристаллография. 2010. Т. 55. № 3. С. 556. https://doi.org/10.1134/S1063774510030247
  4. Федоров П.П., Бучинская И.И. // Успехи химии. 2012. Т. 81. № 1. С. 1. https://doi.org/10.1070/RC2012v081n01ABEH004207
  5. Bordj S., Satha H., Barros A. et al. // Opt. Mater. 2021. V. 118. P. 111249. https://doi.org/10.1016/j.optmat.2021.111249
  6. Boubekri H., Fartas R., Diaf M. et al. // Luminescence. 2024. V. 39. № 4. P. e4719. https://doi.org/10.1002/bio.4719
  7. Cheddadi A., Fartas R., Diaf M., Boubekri H. // J. Luminescence. 2024. V. 265. P. 120237. https://doi.org/10.1016/j.jlumin.2023.120237
  8. Tan J., Zhang P., Li Z., Chen Z. // Infrared Phys. Technol. 2024. V. 140. Р. 105391. https://doi.org/10.1016/j.infrared.2024.105391
  9. Wang Y., Jiang C., Zhang P. et al. // J. Luminescence. 2019. V. 212. P. 160. https://doi.org/10.1016/j.jlumin.2019.04.038
  10. Huang X., Wang Y., Peixiong Z. et al. // J. Alloys Compd. 2019. V. 811. P. 152027. https://doi.org/10.1016/j.jallcom.2019.152027
  11. Кавун В.Я., Слободюк А.В., Гончарук В.К., Лукиянчук Г.Д. // Вестн. ДВО РАН. 2009. № 2. С. 117.
  12. Сорокин Н.И. // ФТТ. 2015. Т. 57. № 7. С. 1325.
  13. Trnovcova V., Fedorov P.P., Ozvoldova M. et al. // J. Optoelectron. Adv. Mater. 2003. V. 5. P. 627.
  14. Бучинская И.И., Федоров П.П. // Кристаллография. 2024. Т. 69. № 2. С. 353. https://doi.org/10.31857/S0023476124020194
  15. Le Bail A. // Powder Diffraction. 2005. V. 20. P. 316. https://doi.org/10.1154/1.2135315
  16. Petříček V., Dušek M., Palatinus L. // Z. Kristallogr. Cryst. Mater. 2014. B. 229. № 5. S. 345. https://doi.org/10.1515/zkri-2014-1737
  17. Senguttuvan N., Aoshima M., Sumiya K., Ishibashil H. // J. Cryst. Growth. 2005. V. 280. P. 462. https://doi.org/10.1016/j.jcrysgro.2005.03.085
  18. Mott B.W. Micro-Indentation Hardness Testing. London, UK: Butterworths Scientific Publications, 1956.
  19. Oliver W.C., Pharr G.M. // J. Mater. Res. 2004. V. 19. № 1. P. 3.
  20. Anstis G.R., Chantikul Р., Lawn B.R., Marshall D.B. // J. Am. Ceram. Soc. 1981. V. 64. Р. 533.
  21. Ladison J.L., Price J.J., Helfinstine J.D., Rosch W.R. // Proc. SPIE. Optical Microlithography XVIII. 2005. V. 5754. P. 1329.
  22. Chen M., Jiang W., Cheng J., Chu X. // Solid State Phenomena. 2011. V. 175. P. 77.
  23. Akchurin M.Sh., Basiev T.T., Demidenko A.A. et al. // Opt. Mater. 2013. V. 35. № 3. P. 444.
  24. Ляпин А.А. // Спектрально-люминесцентные свойства монокристаллов и керамики CaF2:Tm, CaF2:Ho и их применение в лазерной физике. Дис. … канд. физ.-мат. наук. Саранск: ФГБОУ ВПО Мордовский государственный университет им. Н.П. Огарёва, 2014. 142с.
  25. Грязнов М.Ю., Шотин С.В., Чувильдеев В.Н. и др. // Кристаллография. 2012. Т. 57. № 1. С. 151.
  26. Кузнецов С.В. // Синтез монокристаллов и нанопорошков твердых растворов фторидов щелочноземельных и редкоземельных металлов для фотоники. Дис. … канд. хим. наук. М.: МИТХТ, 2007. 206 с.
  27. Каримов Д.Н., Бучинская И.И., Сорокин Н.И. и др. // Кристаллография. 2019. Т. 64. № 5. С. 831. https://doi.org/10.1134/S0023476119050102
  28. Kishan Rao K., Sirdeshmukh D.B. // Bull. Mater. Sci. 1983. V. 5. P. 449.
  29. Buchinskaya I.I., Fedorov P.P., Sobolev B.P. // Proc. SPIE 3178, Solid State Crystals: Growth and Characterization. 1997. V. 3178. P. 59. https://doi.org/10.1117/12.280705
  30. Sobolev B.P. // Crystallography Reports. 2012. V. 57. № 3. Р. 434. https://doi.org/10.1134/S1063774512030194
  31. Buchinskaya I.I., Goryachuk I.O., Sorokin N.I. et al. // Condens. Matter. 2023. V. 8. P. 73. https://doi.org/10.3390/condmat8030073
  32. Krukowska-Fulde В., Niemyski T. // J. Cryst. Growth. 1967. V. 1. № 4. P. 183. https://doi.org/10.1016/0022-0248(67)90051-6
  33. Guo-Hao Ren, Dingzhong Shen, Shaohua Wang, Zhiwen Yin // J. Cryst. Growth. 2002. V. 243. P. 539. http://dx.doi.org/10.1016/S0022-0248(02)01579-8
  34. Guo-Hao Ren, Ding-Zhong Shen, Shao-Hua Wang, Zhi-Wen Yin // Chinese Phys. Lett. 2001. V. 18. № 7. Р. 976. http://dx.doi.org/10.1088/0256-307X/18/7/344
  35. Ren G., Qun D., Li Z., Shen D. // J. Cryst. Growth. 2003. V. 247. № 1–2. Р. 141. http://dx.doi.org/10.1016/s0022-0248(02)01952-8B
  36. Воронкова Е.М., Гречушников Б.Н., Дистлер Г.И., Петров И.П. Оптические материалы для инфракрасной техники: Справочник. М.: Наука, 1965. 336 с.
  37. Kosacki I., Langer J.M. // Phys. Rev. B. 1986. V. 33. P. 5972(R). https://link.aps.org/doi/10.1103/PhysRevB.33.5972
  38. Сорокин Н.И., Каримов Д.Н., Бучинская И.И. // Электрохимия. 2021. Т. 57. № 8. С. 465. https://doi.org/10.31857/S0424857021070136
  39. Kroger F.A., Vink H.J. // Solid State Physics / Eds. Seitz F., Turnbull D. N.Y.: Academic Press, 1956. V. 3. P. 307.
  40. Bonne R.W., Schoonman J. // Solid State Commun. 1976. V. 18. P. 1005.
  41. Сорокин Н.И., Федоров П.П., Соболев Б.П. // Неорган. матер. 1997. Т. 33. № 1. С. 5.
  42. Popov P.A., Sidorov A.A., Kul’chenkov E.A. et al. // Ionics. 2016. V. 23. № 1. P. 223. https://doi.org/10.1007/s11581-016-1802-2
  43. Мурин И.В., Глумов А.В., Глумов О.В. // Электрохимия. 1979. Т. 15. № 8. С. 1119.
  44. Bonne R.W., Schoonman J. // J. Electrochem. Soc. 1977. V. 124. P. 28.
  45. Сорокин Н.И., Федоров П.П., Иванов-Шиц А.К., Соболев Б.П. // ФТТ. 1988. Т. 30. № 5. С. 1537.
  46. Ivanov-Shits A.K., Sorokin N.I., Fedorov P.P., Sobolev B.P. // Solid State Ionics. 1990. V. 37. P. 125.
  47. Ivanov-Shits A.K., Sorokin N.I., Fedorov P.P., Sobolev B.P. // Solid State Ionics. 1989. V. 31. P. 253.
  48. Ivanov-Shits A.K., Sorokin N.I., Fedorov P.P., Sobolev B.P. // Solid State Ionics. 1989. V. 31. P. 269.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Region of solid solution with congruent melting character (saddle point) on concentration triangle PbF2–CdF2–LuF3 (a). Arrows schematically show the course of crystallization lines on the liquidus surface. External view of crystalline boule Pb0.5Cd0.25Lu0.25F2.25 and plate polished for research (b).

Жүктеу (245KB)
3. Fig. 2. Diffraction pattern of Pb0.5Cd0.25Lu0.25F2.25 powder.

Жүктеу (70KB)
4. Fig. 3. Scheme of crystallographic directions relative to the studied crystal plate (a). Diffraction reflection curves obtained on reflection 422 (b).

Жүктеу (291KB)
5. Fig. 4. Conometric images of the sample in polarized light. The angle between the polaroids varies from 0° (a) to 90° (b).

Жүктеу (468KB)
6. Fig. 5. Photograph of the indenter imprint at P = 0.5 N and schematic representation of the measured lengths of the diagonals d1, d2 and cracks c.

Жүктеу (239KB)
7. Fig. 6. Dependences of microhardness (a) and fracture toughness coefficient (b) on the indenter load. Triangular symbols indicate microhardness according to Vickers, round symbols indicate measurement by the instrumental indentation method using the Berkovich pyramid.

Жүктеу (202KB)
8. Fig. 7. Transmission spectra of Pb0.5Cd0.25Lu0.25F2.25 (1), Pb0.621Сd0.3Sr0.079F2 (2), PbF2 (3), Cd0.9Lu0.1F2.1 (4) and СdF2 (5) crystals. Sample thickness is 2 mm.

Жүктеу (103KB)
9. Fig. 8. Temperature dependence of ionic conductivity of the Pb0.5Cd0.25Lu0.25F2.25 solid solution crystal: circles – experiment, straight line – approximation of experimental data by a linear equation (x = 103/T, y = lg (σdcT), R – correlation coefficient).

Жүктеу (78KB)

© Russian Academy of Sciences, 2025