Dynamics of new phase formation in silicon during femtosecond laser ablation
- Авторлар: Mareev Е.I.1, Khmelenin D.N.1, Potemkin F.V.2
-
Мекемелер:
- Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
- Lomonosov Moscow State University
- Шығарылым: Том 70, № 1 (2025)
- Беттер: 18-27
- Бөлім: ДИНАМИКА РЕШЕТКИ И ФАЗОВЫЕ ПЕРЕХОДЫ
- URL: https://rjsvd.com/0023-4761/article/view/686174
- DOI: https://doi.org/10.31857/S0023476125010039
- EDN: https://elibrary.ru/IUBAXZ
- ID: 686174
Дәйексөз келтіру
Аннотация
We experimentally demonstrated (using micro-Raman spectroscopy and transmission electron microscopy) and through numerical modeling that when an intense (1013−1014 W/cm²) femtosecond (~100 fs) laser pulse impacts the surface of silicon with (111) orientation, new polymorphic phases Si-III and Si-XII are formed on the surface and in the volume, localized in lattice defects as well as at the periphery of the ablation crater. This localization of phases is caused by the multi-stage nature of laser-induced phase transitions in silicon, specifically, the phase transitions are initiated by a shock wave, resulting in a cascading transformation process on sub-nanosecond timescales: Si-I => Si-II => => Si-III/Si-XII. The phase transition Si-I => Si-II occurs at the front of the shock wave, while at the rear of the shock wave, a field of dynamic stresses arises in the material, allowing the phase transition Si-II => Si-III/Si-XII to occur. On sub-microsecond timescales, most of the new phases disappear as the material relaxes back to its original state.
Толық мәтін

Авторлар туралы
Е. Mareev
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Хат алмасуға жауапты Автор.
Email: mareev.evgeniy@physics.msu.ru
Ресей, Moscow
D. Khmelenin
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: mareev.evgeniy@physics.msu.ru
Ресей, Moscow
F. Potemkin
Lomonosov Moscow State University
Email: potemkin@physics.msu.ru
Faculty of Physics
Ресей, MoscowӘдебиет тізімі
- Mogni G., Higginbotham A., Gaál-Nagy K., Park N., Wark J.S. // Phys. Rev. B. 2014. V. 89. P. 064104. https://doi.org/10.1103/PhysRevB.89.064104
- Wippermann S., He Y., Vörös M., Galli G. // Appl. Phys. Rev. 2016. V. 3. P. 040807. https://doi.org/10.1063/1.4961724
- Hanfland M., Schwarz U., Syassen K., Takemura K. // Phys. Rev. Lett. 1999. V. 82. P. 1197. https://doi.org/10.1103/PhysRevLett.82.1197
- McBride E.E., Krygier A., Ehnes A. et al. // Nat. Phys. 2019. V. 15. P. 89. https://doi.org/10.1038/s41567-018-0290-x
- Мареев Е.И., Румянцев Б.В., Потемкин Ф.В. // Письма в ЖЭТФ. 2020. Т. 112. С. 780. https://doi.org/10.31857/s1234567820230111
- Budnitzki M., Kuna M. // J. Mechan. Phys. Solids. 2016. V. 95. P. 64. https://doi.org/10.1016/j.jmps.2016.03.017
- Chen H., Levitas V.I., Popov D., Velisavljevic N. // Nat. Commun. 2022. V. 13. P. 982. https://doi.org/10.1038/s41467-022-28604-1
- Daisenberger D., Wilson M., McMillan P.F. et al. // Phys. Rev. B. 2007. V 75. P. 224118. https://doi.org/10.1103/PhysRevB.75.224118
- Domnich V., Gogotsi Y. // Rev. Adv. Mater. Sci. 2002. V. 3. P. 1. https://www.ipme.ru/e-journals/RAMS/no_1302/domnich/domnich.pdf
- Zeng Z., Zeng Q., Mao W.L., Qu S. // J. Appl. Phys. 2014. V. 115. P. 103514. https://doi.org/10.1063/1.4868156
- Ovsyuk N.N., Lyapin S.G. // Appl. Phys. Lett. 2020. V. 116. P. 062103. https://doi.org/10.1063/1.5145246
- Sundaram S.K., Mazur E. // Nat. Mater. 2002. V. 1. P. 217. https://doi.org/10.1038/nmat767
- Vailionis A., Gamaly E.G., Mizeikis V. et al. // Nat. Commun. 2011. V. 2. P. 445. https://doi.org/10.1038/ncomms1449
- Mareev E.I., Lvov K.V., Rumiantsev B.V. et al. // Laser Phys. Lett. 2019. V. 17. P. 015402. https://doi.org/10.1088/1612-202X/ab5d23
- Butkus S. // J. Laser Micro/Nanoengineering. 2014. V 9. P. 213. https://doi.org/10.2961/jlmn.2014.03.0006
- Gorman M.G., Briggs R., McBride E.E. et al. // Phys. Rev. Lett. 2015. V. 115. P. 095701. https://doi.org/10.1103/PhysRevLett.115.095701
- Brown S.B., Gleason A.E., Galtier E. et al. // Sci. Adv. 2019. V. 5. P. eaau8044. https://doi.org/10.1126/sciadv.aau8044
- Potemkin F.V., Mareev E.I., Garmatina A.A. et al. // Rev. Sci. Instrum. 2021. V. 92. P. 053101. https://doi.org/10.1063/5.0028228
- Ковальчук М.В., Борисов М.М., Гарматина А.А. и др. // Кристаллография. 2022. Т. 67. № 5. С. 771. https://doi.org/10.31857/s0023476122050083
- Moser R., Domke M., Winter J. et al. // Adv. Opt. Technol. 2018. V. 7. P. 255. https://doi.org/10.1515/aot-2018-0013
- Mareev E., Obydennov N., Potemkin F. // Photonics. 2023. V. 10. P. 380. https://doi.org/10.3390/photonics10040380
- Mareev E.I., Potemkin F.V. // Int. J. Mol. Sci. 2022. V. 23. P. 2115. https://doi.org/10.3390/ijms23042115
- Норман Г.Э., Стариков С.В., Стегайлов В.В. // ЖЭТФ. 2012. Т. 141. С. 910. https://doi.org/10.1134/S1063776112040115
- Greathouse J.A. Two-Temperature (TTM) Molecular Dynamics. Standia National LAborotory, NNSA.
- Mareev E., Pushkin A., Migal E. et al. // Sci. Rep. 2022. V. 12. P. 7517. https://doi.org/10.1038/s41598-022-11501-4
- Yang J., Zhang D., Wei J. et al. // Micromachines. 2022. V. 13. P. 1119. https://doi.org/10.3390/mi13071119
- Taylor L.L., Scott R.E., Qiao J. // Opt. Mater. Express. 2018. V. 8. P. 648. https://doi.org/10.1364/ome.8.000648
- Liu J., Wu M., Sun Z. et al. // Appl. Surf. Sci. 2024. V. 661. P. 160022. https://doi.org/10.1016/j.apsusc.2024.160022
- An H., Wang J., Fang F., Jiang J. // Opt. Laser Technol. 2024. V. 171. P. 110427. https://doi.org/10.1016/j.optlastec.2023.110427
- Plimpton S. // J. Comput. Phys. 1995. V. 117. P. 1. https://doi.org/10.1006/jcph.1995.1039
- Pisarev V.V., Starikov S.V. // J. Phys.: Condens. Matter. 2014. V. 26. № 47. P. 475401. https://doi.org/10.1088/0953-8984/26/47/475401
- Norman G.E., Starikov S.V., Stegailov V.V. et al. // Contrib. Plasma Phys. 2013. V. 2. P. 129. https://doi.org/10.1002/ctpp.201310025
- Stukowski A. // Model. Simul. Mat. Sci. Eng. 2010. V. 18. № 1. P. 015012. https://doi.org/10.1088/0965-0393/18/1/015012
- Coleman S.P., Spearot D.E., Capolungo L. // Model. Simul. Mat. Sci. Eng. 2013. V. 21. P. 055020. https://doi.org/10.1088/0965-0393/21/5/055020
- Пашаев Э.М. Корчуганов В.Н., Субботин И.А. и др. // Кристаллография. 2021. Т. 66. С. 877. https://doi.org/10.31857/S0023476122050083
- Gogotsi Y., Baek C., Kirscht F. // Semicond. Sci. Technol. 1999. V. 10. P. 936. https://doi.org/10.1088/0268-1242/14/10/310
- Li H., Yu X., Zhu X. et al. // AIP Adv. 2021. V. 4. P. 045103. https://doi.org/10.1063/5.0034896
- Bradby J.E., Williams J.S., Wong-Leung J. et al. // Appl. Phys. Lett. 2000. V. 23. P. 3749. https://doi.org/10.1063/1.1332110
- Ikoma Y., Yamasaki T., Shimizu T. et al. // Mater. Characterization. 2020. V. 169. P. 110590. https://doi.org/10.1016/j.matchar.2020.110590
- Xuan Y., Tan L., Cheng B. et al. // J. Phys. Chem. C. 2020. V. 124. P. 27089. https://doi.org/10.1021/acs.jpcc.0c07686
- Cheng C. // Phys. Rev. B. 2003. V. 67. P. 134109. https://doi.org/10.1103/PhysRevB.67.134109
- Anzellini S., Wharmby M.T., Miozzi F. et al. // Sci. Rep. 2019. V. 9. P. 15537. https://doi.org/10.1038/s41598-019-51931-1
- Yin M.T. // Phys. Rev. B. 1984. V. 30. P. 1773. https://doi.org/10.1103/PhysRevB.30.1773
- Piltz R.O., MacLean J.R., Clark S.J. et al. // Phys. Rev. B. 1995. V. 52. P. 4072. https://doi.org/10.1103/PhysRevB.52.4072
Қосымша файлдар
