Atomistic simulation of paratellurite α-TeO2 crystal: II. Anisotropy and microscopic aspects of ion transport

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The molecular dynamics method was used to study the peculiarities of ion transport in α-TeO2 paratellurite crystals. It has been shown that in α-TeO2, ion transport caused by oxygen transfer is anisotropic. The highest values of diffusion coefficients are observed along the c-axis and amount to DO~ 1×10–7 cm2/s at temperatures near the melting point. It has been shown that oxygen ions jump over distances of 1.5–2.5 Å via a vacancy or interstitial mechanism.

Толық мәтін

Рұқсат жабық

Авторлар туралы

А. Ivanov-Schitz

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Хат алмасуға жауапты Автор.
Email: alexey.k.ivanov@gmail.com
Ресей, Moscow

Әдебиет тізімі

  1. Кондратюк И.П., Мурадян Л.А., Писаревский Ю.В. и др. // Кристаллография. 1987. Т. 32. С. 609.
  2. Thomas P.A. // J. Phys. C. 1988. V. 21. P. 4611. http://stacks.iop.org/0022–3719/21/i=25/a=009
  3. Дудка А.П., Головина Т.Г., Константинова А.Ф. // Кристаллография. 2019. Т. 64. С. 930. https://doi.org/10.1134/S0023476119060043
  4. Arlt G., Schweppe H. // Solid State Commun. 1968. V. 6. P. 783. https://doi.org/10.1016/0038–1098(68)90119–1
  5. Wang P., Zhang Z. // Appl. Opt. 2017. V. 56. P. 1647. https://doi.org/10.1364/AO.56.001647
  6. Li Y., Fan W., Sun H. et al. // J. Appl. Phys. 2010. V. 107. P. 093506. https://doi.org/10.1063/1.3406135
  7. Liu Z., Yamazaki T., Shen Y. et al. // Appl. Phys. Lett. 2007. V. 90. P. 173119. https://doi.org/10.1063/1.2732818
  8. Ковальчук М.В., Благов А.Е., Куликов А.Г. и др. // Кристаллография. 2014. Т. 59. С. 950.
  9. Куликов А.Г. Образование приповерхностных структур в кристаллах парателлурита и тетрабората лития при миграции носителей заряда во внешнем электрическом поле. Дис. … канд. физ.-мат. наук. Москва, 2019.
  10. Иванов-Шиц А.К. //Кристаллография. 2024. Т. 69. № 6. С. 1009. https://doi.org/10.31857/S0023476124060116
  11. Wegener J., Kanert O., Küchler R. et al. // Z. Naturforsch. А. 1994. V. 49. P. 1151. https://doi.org/10.1515/zna-1994-1208
  12. Wegener J., Kanert O., Küchler R. et al. // Radiat. Eff. Defects Solids. 1995. V. 114. P. 277.
  13. BatteryMaterials. https://pathfinder.batterymaterials.info/
  14. Jain H., Nowick A.S. // Phys. Status Solidi. А. 1981. V. 67. P. 701. https://doi.org/10.1002/pssa.2210670242
  15. Hartmann E., Kovács L. // Phys. Status Solidi. А. 1982. V. 74. P. 59. https://doi.org/10.1002/pssa.2210740105

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Temperature dependences of the oxygen diffusion coefficients DO in crystals containing 15 oxygen vacancies (a) and 10 interstitial oxygen ions (b): total diffusion coefficient (1), DO along the axes a (2), b (3) and c (4), respectively. The numbers near the straight lines are the diffusion activation energies.

Жүктеу (166KB)
3. Fig. 2. Possible transport routes of oxygen anions. Large spheres are oxygen in crystallographic positions, small grey and black spheres are possible intermediate positions of oxygen for “channels” of two types. Arrows show possible trajectories of oxygen movement in the direction of the c axis (a) and in the directions of the axes a, b (b).

Жүктеу (256KB)
4. Fig. 3. Calculated trajectories of oxygen anions in a TeO2 crystal with 15 oxygen vacancies.

Жүктеу (485KB)
5. Fig. 4. Calculated trajectories of oxygen anions in a TeO2 crystal with 10 interstitial oxygen atoms.

Жүктеу (445KB)
6. Fig. 5. Three adjacent uncorrelated jumps of oxygen anions.

Жүктеу (146KB)

© Russian Academy of Sciences, 2025