Accounting for the imperfection of the spectrophotometric complex optical elements when measuring transmission spectra of gyrotropic uniaxial crystals. I. Samples are cut perpendicular to the optical axis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A theoretical and experimental study of the effect of imperfections of the polarizer, analyzer and photomultiplier tube (PMT) on the measurement results of spectral transmission dependences of catangasite crystals Ca3TaGa3Si2O14 cut perpendicular to the optical axis has been carried out. There is a difference between the spectra obtained with p- and s-polarizations of incident light and the jumps on the curves at λ = 1050 nm. This is due to the imperfection of the PMT and the optical activity of the crystal. The estimation of the parameters of the PMT from experimental data depending on the wavelength is carried out. The influence of the imperfection of the PMT and polarizers on the results of calculating the rotation of the plane of polarization of light ρ is studied. It is shown that transmission spectra measured at angles between the polarizer and the analyzer ±45° are necessary for accurate calculation of the value of ρ. The measurement errors obtained depend on the change of optical elements in a particular device.

Full Text

Restricted Access

About the authors

T. G. Golovina

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Author for correspondence.
Email: tatgolovina@mail.ru
Russian Federation, Moscow

A. F. Konstantinova

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: tatgolovina@mail.ru
Russian Federation, Moscow

Е. V. Zabelina

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: tatgolovina@mail.ru
Russian Federation, Moscow

N. S. Kozlova

National University of Science and Technology MISIS

Email: tatgolovina@mail.ru
Russian Federation, Moscow

V. М. Kasimova

National University of Science and Technology MISIS

Email: tatgolovina@mail.ru
Russian Federation, Moscow

References

  1. Шерклифф У. Поляризованный свет. М.: Мир, 1965. 264 с.
  2. Константинова А.Ф., Головина Т.Г., Набатов Б.В., Евдищенко Е.А. // Кристаллография. 2018. Т. 63. № 6. С. 921. https://doi.org/10.1134/S0023476118060139
  3. Милль Б.В., Буташин А.В., Ходжабагян Г.Г. и др. // Докл. АН СССР. 1982. Т. 264. № 6. С. 1385.
  4. Батурина О.А., Гречушников Б.Н., Каминский А.А. и др. // Кристаллография. 1987. Т. 32. Вып. 2. С. 406.
  5. Каминский А.А. Физика и спектроскопия лазерных кристаллов. М.: Наука, 1986. 271 с. https://newpiezo.com/
  6. Забелина Е.В., Козлова Н.С., Бузанов О.А. // Оптика и спектроскопия. 2023. Т. 131. Вып. 5. С. 634. https://doi.org/10.21883/OS.2023.05.55715.67-22 https://www.campilab.by/file/35_5991-2529ru.pdf/5991-2529RU.pdf
  7. Standard Operating Procedure Agilent Technologies – Cary 7000 Universal Measurement Spectrophotometer (UMS). University at Buffalo, 2024. P. 1. https://www.buffalo.edu/shared-facilities-equip/facilities-equipment/MaterialsCharacterizationLabs.host.html/content/shared/www/shared-facilities-equip/equipment-list/agilent-cary-7000.detail.html https://www.wolfram.com/mathematica/
  8. Шамбуров В.А., Евдищенко Е.А., Вислобоков А.И. // Кристаллография. 1988. Т. 33. Вып. 3. С. 554.
  9. Константинова А.Ф., Гречушников Б.Н., Бокуть Б.В., Валяшко Е.Г. Оптические свойства кристаллов. Минск: Наука и техника, 1995. 302 с.
  10. Шубников А.В. Основы оптической кристаллографии. М.: Изд-во АН СССР, 1958. 205 с.
  11. Кизель В.А., Бурков В.И. Гиротропия кристаллов. М.: Наука, 1980. 304 с.
  12. Shindo Y., Nakagawa M. // Rev. Sci. Instrum. 1985. V. 56. № 1. P. 32. https://doi.org/10.1063/1.1138467
  13. Shi X., Yuan D., Wei A. et al. // Mater. Res. Bull. 2006. V. 41. № 6. P. 1052. https://doi.org/10.1016/j.materresbull.2005.11.019
  14. Головина Т.Г., Константинова А.Ф., Касимова В.М. и др. // Кристаллография. 2024. Т. 69. № 5. С. 835. https://doi.org/10.31857/S0023476124050092

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Baselines: a – without polarizer, 100 and 0%; b – 100 and 0% with polarizer for s- and p-polarizations; c, d – with polarizer and analyzer, 100% – polarizer and analyzer are parallel, 0% – polarizer and analyzer are crossed, the insets show the zero line on an enlarged scale; c – p-polarization, d – s-polarization.

Download (229KB)
3. Fig. 2. Transmission spectra at different scales: 1 – thick sample of catangasite Ca3TaGa3Si2O14 (d = 10 mm), 2 – thin sample of Ca3TaGa3Si2O14 (d = 1 mm), 3 – lithium niobate LiNbO3 (d = 1 mm), 4 – garnet Gd3Al2Ga3O12:Ce (d = 1.94 mm).

Download (166KB)
4. Fig. 3. Results of measuring the intensity of transmitted light for p- and s-polarizations and averaged spectra (Ip + Is)/2: a – control light filter made of ZhS-3 glass, d = 2.14 mm (1), and Ca3TaGa3Si2O14, d = 1 mm (2); b – Ca3TaGa3Si2O14, d = 10 mm; c – comparison of averaged spectra for glass (1), thin (2) and thick (3) Ca3TaGa3Si2O14 samples.

Download (193KB)
5. Fig. 4. Calculation of f1/f2 and transmitted light intensities for catangasite crystals at I0p = 88.3 and I0s = 87.2: a – calculation of f1/f2 for a thin sample (d = 1 mm), b, c – calculation of transmitted light intensities for thin (b) and thick (c) samples with the obtained f1/f2 data; d – calculation of f1/f2 for a thick sample (d = 10 mm), d, e – calculation of transmitted light intensities for thin (d) and thick (f) samples with the obtained f1/f2 data.

Download (240KB)
6. Fig. 5. Experimental spectra of Ca3TaGa3Si2O14 at different angles τ between the polarizer and the analyzer: a, b – original, c, d – smoothed; τ = 0° and 90° (a, c), τ = ±45° (b, d). Solid lines – thick sample (d = 10 mm), measurements with s-polarization; dotted line – thin sample (d = 1 mm), measurements with p-polarization. For smoothed curves, the part of the spectrum at λ > 1050 nm is multiplied by the value I(1049 nm)/I(1050 nm) = 1.125 for τ = 90°, 1.057 for τ = –45°, 1.046 for τ = 45° (thick sample), 0.873 for τ = 90°, 0.917 for τ = –45°, 0.939 for τ = 45° (thin sample).

Download (496KB)

Copyright (c) 2025 Russian Academy of Sciences