A new type of copper-oxide cluster in the crystal structure of NaCu12(Si2O7)4Cl, a new representative of the alkali copper disilicate family

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new compound NaCu12(Si2O7)4Cl was synthesized by chemical deposition from gases. Using X-ray diffraction analysis, its crystal structure was established as containing 0-dimensional copper-oxide clusters Cu12O24 of a new type, which can be described as a truncated tetragonal bipyramid built from CuO4 square groups connected by sharing common edges and vertices. The complexes are combined through the Si2O7 disilicate groups into a three-dimensional electroneutral framework [[Cu12(Si2O7)4]0, built on the principle of the bcc grid (body-centered cubic lattice). In the cavities of the framework disordered Na+ and Cl ions are located. The structure of the 12-nucleated copper-oxide clusters is similar to those of the CunO2n polyoxocuprates found in various minerals and inorganic compounds.

Full Text

Restricted Access

About the authors

I. V. Kornyakov

Kola Science Centre, Russian Academy of Sciences; St. Petersburg State University

Email: s.krivovichev@ksc.ru

Nanomaterials Research Centre, Kola Science Centre, Russian Academy of Sciences; Institute of Earth Sciences, St. Petersburg State University

Russian Federation, Apatity; St. Petersburg

S. V. Krivovichev

Kola Science Centre, Russian Academy of Sciences; St. Petersburg State University

Author for correspondence.
Email: s.krivovichev@ksc.ru

Nanomaterials Research Centre, Kola Science Centre, Russian Academy of Sciences; Institute of Earth Sciences, St. Petersburg State University

Russian Federation, Apatity; St. Petersburg

References

  1. Shores M.P., Nytko E.A., Bartlett B.M. et al. // J. Am. Chem. Soc. 2005. V. 127. P. 13462. https://doi.org/10.1021/ja053891p
  2. Janson O., Tsirlin A.A., Schmitt M. et al. // Phys. Rev. B. 2010. V. 82. P. 014424. https://doi.org/10.1103/PhysRevB.82.014424
  3. Botana A.S., Zheng H., Lapidus S.H. et al. // Phys. Rev. B. 2018. V. 98. P. 054421. https://doi.org/10.1103/PhysRevB.98.054421
  4. Luo M., Li Z.-M., Qui J.-J. et al. // Res. Chem. Intermed. 2014. V. 40. P. 2895. https://doi.org/10.1007/s11164-013-1136-x
  5. Smurova L.A., Sorokina O.N., Kovarskii A.L. // Pet. Chem. 2017. V. 57. P. 1115. https://doi.org/10.1134/S0965544117100152
  6. Elakkiya V., Agarwal Y., Sumathi S. // Solid State Sci. 2018. V. 82. P. 92. https://doi.org/10.1016/j.solidstatesciences.2018.06.008
  7. Deng Z., Wang Z., Zhang P. et al. // Enzyme Microb. Technol. 2019. V. 126. P. 62. https://doi.org/10.1016/j.enzmictec.2019.03.007
  8. Wang P., Yuan Y., Xu K. et al. // Bioact. Mater. 2021. V. 6. P. 916. https://doi.org/10.1016/j.bioactmat.2020.09.017
  9. Корняков И.В. Синтез и кристаллохимия новых минералоподобных соединений двухвалентной меди. Дис. … канд. геол.-минерал. наук. СПб.: СПбГУ, 2021.
  10. Kornyakov I.V., Shilovskikh V.V., Bocharov V.N. et al. // Inorg. Chem. Commun. 2023. V. 157. P. 111435. https://doi.org/10.1016/j.inoche.2023.111435
  11. Rigaku Oxford Diffraction, CrysAlisPro Software System, version 42.102a. Rigaku Oxford Diffraction, Yarnton, England, 2023.
  12. Sheldrick G.M. // Acta Cryst. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
  13. Sheldrick G.M. // Acta Cryst. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  14. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  15. Gagné O.C., Hawthorne F.C. // Acta Cryst. B. 2015. V. 71. P. 562. https://doi.org/10.1107/S2052520615016297
  16. Brese N.E., O’Keeffe M. // Acta Cryst. B. 1991. V. 47. P. 192. https://doi.org/10.1107/S0108768190011041
  17. The Cambridge Crystallographic Data Centre (CCDC). Inorganic Crystal Structure Data Base – ICSD. https://www.ccdc.cam.ac.uk/, http://www.fizkarlsruhe.de
  18. Pennington W.T. // J. Appl. Cryst. 1999. V. 32. P. 1028. https://doi.org/10.1107/S0021889899011486
  19. Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. V. 14. P. 3576. https://doi.org/10.1021/cg500498k
  20. Krivovichev S.V., Filatov S.K., Vergasova L.P. // Miner. Petrol. 2012. V. 107. P. 235. https://doi.org/10.1007/s00710-012-0238-2.
  21. Krivovichev S.V. // CrystEngComm. 2024. V. 26. P. 1245.
  22. Shuvalov R.R., Vergasova L.P., Semenova T.F. et al. // Am. Mineral. 2013. V. 98. P. 463.
  23. Möller A. // Z. Anorg. Allg. Chem. 1998. V. 624. P. 1085. https://doi.org/10.1002/(SICI)1521-3749(199807)624:7<1085::AID-ZAAC1085>3.0.CO;2-J
  24. Möller A. // Z. Anorg. Allg. Chem. 1997. 1997. V. 623. P. 1685. https://doi.org/10.1002/zaac.19976231102
  25. Kawamura K., Kawahara A., Iiyama J.T. // Acta Cryst. B. 1978. V. 34. P. 3181. https://doi.org/10.1107/S0567740878010444
  26. dos Santos A.M., Brandão P., Fitch A. et al. // J. Solid State Chem. 2007. V. 180. P. 16. https://doi.org/10.1016/j.jssc.2006.09.012
  27. Krivovichev S.V. // Mineral. Mag. 2013. V. 77. P. 275. https://doi.org/10.1180/minmag.2013.077.3.05
  28. Krivovichev S.V., Krivovichev V.G. // Acta Cryst. A. 2020. V. 76. P. 429. https://doi.org/10.1107/S2053273320004209
  29. Kondinski A., Monakhov K.Y. // Chem. Eur. J. 2017. V. 23. P. 7841. https://doi.org/10.1002/chem.201605876
  30. Krivovichev S.V. // Acta Cryst. B. 2020. V. 76. P. 618.
  31. Effenberger H., Giester G., Krause W. et al. // Am. Mineral. 1998. V. 83. P. 607.
  32. Hawthorne F.C., Groat L.A. // Mineral. Mag. 1986. V. 50. P. 157.
  33. Cooper M.A., Hawthorne F.C. // Can. Mineral. 2000. V. 38. P. 801.
  34. Giuseppetti G., Mazzi F., Tadini C. // N. Jb. Miner. Mh. 1992. B. 1992. S. 113.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Island complex of CuO4 squares (a), the mode of attachment of disilicate groups to the copper-oxygen complex (b) and the crystal structure of NaCu12(Si2O7)4Cl (c). Ellipsoids of thermal displacements of atoms are shown at the 50% probability level.

Download (291KB)
3. Fig. 2. Difference maps of electron density in cavities inside the copper-oxygen complex (a) and between disilicate groups (b).

Download (188KB)
4. Fig. 3. Types of polyoxocuprate clusters observed in the structures: a – NaCu12(Si2O7)4Cl, b – chertnerite, c – boleite, d – kumengeite. Oxygen atoms are indicated by balls, copper squares are shown.

Download (113KB)

Copyright (c) 2025 Russian Academy of Sciences