On the design of the orbital constellation of a lunar global navigation satellite system

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Based on the results of numerical modeling and investigation of orbital structures in the lunar dynamic space, this article proposes an original orbital grouping of the lunar global navigation satellite system in quasi-frozen highly elliptical and highly inclined orbits. The proposed grouping has structural stability and provides effective navigation coverage. The search for such a configuration of the lunar GNSS was carried out by varying the positional orbital elements in wide ranges: the semimajor axis from 4 to 12 radii of the Moon, the eccentricity from 0 to 0.7, and the inclination from 40°to 65°.

About the authors

V. A. Avdyushev

Research Institute of Applied Mathematics and Mechanics, Tomsk State University

Email: sch@niipmm.tsu.ru
Tomsk, Russia

N. A. Popandopulo

Research Institute of Applied Mathematics and Mechanics, Tomsk State University

Author for correspondence.
Email: sch@niipmm.tsu.ru
Tomsk, Russia

References

  1. Zelenyi L., Petrukovich A., Khartov V.V. et al. Russian Lunar Space Program // Proc. 40th COSPAR Scientific Assembly. 2014. Moscow, Russia. Abstract ID. B0.1-5-14.
  2. Микрин Е.Л., Михайлов М.В., Орловский И.В. и др.Спутниковая навигация окололунных космических аппаратов и объектов на поверхности Луны // Гироскопия и навигация. 2019. С. 22–31.
  3. Дмитриев А.О., Москатиньев И.В., Нестерин И.М. и др. Анализ вариантов навигационных систем для Луны // Труды МАИ. 2021. № 118. С. 1–38.
  4. Carosi M., Capolicchio J., Tosti M. et al.Comparison among Orbital Constellation for a Global Lunar Satellite Navigation System // Proc. Joint 26th Ka and Broadband Communications Conference and the 38th International Communications Satellite Systems Conference. Virginia, USA. 2021.
  5. Walker J.G.Satellite constellations // J. British Interplanetary Society. 1984. V. 37. P. 559–571.
  6. Ely T.A.Stable Constellations of Frozen Elliptical Inclined Lunar Orbits // J. Astronautical Sciences. 2005. V. 53. Iss. 3. P. 301–316.
  7. Ely T.A., Lieb E.Constellations of elliptical inclined lunar orbits providing polar and global coverage // J. Astronautical Sciences. 2006. V. 54(1). P. 53–67.
  8. Howell K.C.Three-Dimensional, Periodic, 'Halo' Orbits // Celestial Mechanics. 1984. V. 32. Iss. 1. P. 53–71.
  9. Wang K., Li K., Lv S. et al.Multi-orbit lunar GNSS constellation design with distant retrograde orbit and Halo orbit combination // Scientific Reports. 2023. V. 13. Art.ID. 10158. doi: 10.1038/s41598-023-37348-x.
  10. Gao Z., Hou X. Coverage Analysis of Lunar Communication/Navigation Constellations Based on Halo Orbits and Distant Retrograde Orbits // J. Navigation. 2020. V. 73(2). P. 282–300. doi: 10.1017/S0373463320000065.
  11. Лидов М.Л.Эволюция орбит искусственных спутников под воздействием гравитационных возмущений внешних тел // Искусственные спутники Земли. 1961. Вып. 8. С. 5–45.
  12. Kozai Y.Secular perturbations of asteroids with high inclination and eccentricity // Astron. J. 1962. V. 67. P. 591–598.
  13. Shevchenko I.The Lidov–Kozai Effect — Applications in Exoplanet Research and Dynamical Astronomy. Springer International Publishing, 2017.
  14. Valtonen M.J., Karttunen H. The three-body problem. Cambridge University Press, 2005.
  15. Попандопуло Н.А., Александрова А.Г., Томилова И.В. и др. Численное моделирование динамики искусственных спутников Луны// Астрономический вестник. Исследования Солнечной системы. 2022. Т. 56. № 4. С. 266–284. doi: 10.31857/S0320930X22040077.
  16. Spherical Harmonic ASCII Model of the gravity fields of Earth's Moon GRGM1200L. 2021.https://pds-geosciences.wustl.edu/grail/grail-l-lgrs-5-rdr-v1/grail_1001/shadr/gggrx_1200l_bouguer_sha.tab
  17. Folkner W.M., Park R.S.Planetary ephemeris DE438 for Juno // Tech. Rep. IOM 392R-18-004. Pasadena, CA: Jet Propulsion Laboratory, 2018.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences