Numerical simulation of a 3U-CubeSat orbit maintenance using electrothermal engine and magnetic attitude control system

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study focuses on performing orbit maintenance for a 3U-CubeSat using an electrothermal engine and a simple active magnetic attitude control system. The satellite is equipped with magnetorquers and a magnetometer. As such, it cannot maintain the engine axis attitude along the tangential direction for orbit maintenance. Instead, by realizing a constant dipole moment and damping, attitude along the geomagnetic induction vector is constructed. This attitude is close to tangential on a sun-synchronous orbit near the equator. Numerical simulation of the satellite motion is performed showing capability to provide simple and reliable orbit maintenance. Thrust parameters in uncontrolled motion are analyzed.

Full Text

Restricted Access

About the authors

D. S. Roldugin

Keldysh Institute of Applied Mathematics

Author for correspondence.
Email: rolduginds@gmail.com
Russian Federation, Moscow

D. S. Ivanov

Keldysh Institute of Applied Mathematics

Email: rolduginds@gmail.com
Russian Federation, Moscow

S. S. Tkachev

Keldysh Institute of Applied Mathematics

Email: rolduginds@gmail.com
Russian Federation, Moscow

Ya. V. Mashtakov

Keldysh Institute of Applied Mathematics

Email: rolduginds@gmail.com
Russian Federation, Moscow

A. V. Khokhlov

Geoscan Ltd.

Email: rolduginds@gmail.com
Russian Federation, Saint Petersburg

K. I. Starikov

Geoscan Ltd.; Saint-Petersburg State University

Email: rolduginds@gmail.com
Russian Federation, Saint Petersburg; Saint Petersburg

References

  1. Ovchinnikov M.Y., Roldugin D.S. A survey on active magnetic attitude control algorithms for small satellites // Progress in Aerospace Sciences. 2019. V. 109. Art. ID. 100546. https://doi.org/10.1016/j.paerosci.2019.05.006
  2. Searcy J.D., Pernicka H.J. Magnetometer-Only Attitude Determination Using Novel Two-Step Kalman Filter Approach // J. Guidance, Control, and Dynamics. 2012. V. 35. Iss. 6. P. 1693–1701.https://doi.org/10.2514/1.57344
  3. Psiaki M.L. Global Magnetometer-Based Spacecraft Attitude and Rate Estimation // J. Guidance, Control, and Dynamics. 2004. V. 27. Iss. 2. P. 240–250.
  4. Abdelrahman M., Park S.-Y. Integrated attitude determination and control system via magnetic measurements and actuation // Acta Astronautica. 2011. V. 69. Iss. 3–4. P. 168–185. https://doi.org/10.1016/J.actaastro.2011.03.010
  5. Буланов Д.М., Сазонов В.В. Исследование эволюции вращательного движения спутника Фотон М-2 // Косм. исслед. 2020. Т. 58. № 4. С. 291–304. https://doi.org/10.31857/S0023420620040032
  6. Абрашкин В.И., Воронов К.Е., Дорофеев А.С. и др. Определение вращательного движения малого космического аппарата Аист-2Д по данным магнитных измерений // Косм. исслед. 2019. Т. 57. № 1. С. 61–73. https://doi.org/10.1134/S0023420619010011
  7. Крамлих А.В., Николаев П.Н., Рылько Д.В. Бортовой двухэтапный алгоритм определения ориентации наноспутника SAMSAT-ION // Гироскопия и навигация. 2023. Т. 31. № 2. С. 65–85.
  8. Ovchinnikov M.Y., Roldugin D.S., Penkov V.I. Asymptotic study of a complete magnetic attitude control cycle providing a single-axis orientation // Acta Astronautica. 2012. V. 77. P. 48–60. https://doi.org/10.1016/j.actaastro.2012.03.001
  9. Lovera M., Astolfi A. Spacecraft attitude control using magnetic actuators // Automatica. 2004. V. 40. Iss. 8. P. 1405–1414. https://doi.org/10.1016/j.automatica.2004.02.022
  10. Celani F. Robust three-axis attitude stabilization for inertial pointing spacecraft using magnetorquers // Acta Astronautica. 2015. V. 107. P. 87–96. https://doi.org/10.1016/j.actaastro.2014.11.027
  11. Wisniewski R. Linear Time-Varying Approach to Satellite Attitude Control Using Only Electromagnetic Actuation // J. Guidance, Control, and Dynamics. 2000. V. 23. Iss. 4. P. 640–647. https://doi.org/10.2514/2.4609
  12. Okhitina A., Roldugin D., Tkachev S. Application of the PSO for the construction of a 3-axis stable magnetically actuated satellite angular motion // Acta Astronautica. 2022. V. 195. P. 86–97. https://doi.org/10.1016/J.ACTAASTRO.2022.03.001
  13. Сарычев В.А., Сазонов В.В. Оптимальные параметры пассивных систем ориентации спутников // Косм. исслед. 1976. Т. 14. № 2. С. 198–208.
  14. Сарычев В.А., Овчинников М.Ю. Движение спутника с постоянным магнитом относительно центра масс // Косм. исслед. 1986. Т. 24. № 4. С. 527–543.
  15. Белецкий В.В., Яншин А.М. Влияние аэродинамических сил на вращательное движение искусственных спутников. Киев: Наукова Думка, 1984. 187 с.
  16. Guerman A.D., Ivanov D.S., Roldugin D.S. et al. Orbital and Angular Dynamics Analysis of the Small Satellite SAR Mission INFANTE // Cosmic Research. 2020. V. 58. Iss. 3. P. 206–217. https://doi.org/10.1134/S0010952520030016
  17. ГОСТ Р 25645.166–2004. Атмосфера Земли верхняя. Модель плотности для баллистического обеспечения полетов искусственных спутников Земли. М.: ИПК Издательство стандартов, 2004. 24 с.
  18. Alken P., Thébault E., Beggan C.D. et al. International Geomagnetic Reference Field: the thirteenth generation // Earth, Planets and Space. 2021. V. 73. Iss. 1. Art. ID. 49. https://doi.org/10.1186/s40623–020–01288-x
  19. Иванов Д.С., Овчинников М.Ю., Ролдугин Д.С. и др. Программный комплекс для моделирования орбитального и углового движения спутников // Математическое моделирование. 2019. Т. 31. № 12. С. 44–56. https://doi.org/10.1134/S0234087919120049

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Geoscan-Edelweiss device

Download (187KB)
3. Fig. 2. Accelerometer readings during pulse generation

Download (278KB)
4. Fig. 3. Angular velocity during engine start-up

Download (198KB)
5. Fig. 4. Orientation of thrust in the spacecraft body

Download (70KB)
6. Fig. 5. Stabilization by the geomagnetic induction vector

Download (148KB)
7. Fig. 6. Comparison of the tangential direction and the vector of geomagnetic induction

Download (282KB)
8. Fig. 7. Stabilization of the device by the induction vector

Download (219KB)
9. Fig. 8. Orbit parameter

Download (200KB)
10. Fig. 9. Average major semi-axis

Download (198KB)

Copyright (c) 2025 Russian Academy of Sciences