Supercooling of evaporating water droplets on superhydrophobic surfaces at low temperatures

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

A theoretical analysis of the temperature change of an evaporating droplet on a superhydrophobic surface is performed taking into account heat fluxes of various types. The results show that the additional cooling effect of evaporation can lead to significant cooling and even crystallization of sessile droplets at positive temperatures. However, with a decrease in the ambient temperature, the efficiency of this additional cooling decreases. A method for continuous monitoring of the temperature of an evaporating droplet based on the measured thermodynamic parameters of sessile droplets is proposed. Experimental studies conducted at temperatures slightly above and below zero degrees Celsius demonstrated a satisfactory correlation between the results of the theoretical analysis and the experimentally measured supercooling of water droplets.

作者简介

K. Emelyanenko

Frumkin Institute of Physical Chemistry and Electrochemistry

Email: emelyanenko.kirill@gmail.com
Leningrad Avenue, 31, bld. 4, Moscow, 119071 Russia

A. Emelyanenko

Frumkin Institute of Physical Chemistry and Electrochemistry

Leningrad Avenue, 31, bld. 4, Moscow, 119071 Russia

L. Boinovich

Frumkin Institute of Physical Chemistry and Electrochemistry

Leningrad Avenue, 31, bld. 4, Moscow, 119071 Russia

参考

  1. Schofield F.G.H., Wilson S.K., Pritchard D., Sefiane K. The lifetimes of evaporating sessile droplets are significantly extended by strong thermal effects // J. Fluid Mech. 2018. V. 851. P. 231–244. https://doi.org/10.1017/jfm.2018.496
  2. Nguyen T.A.H., Biggs S.R., Nguyen A.V. Analytical model for diffusive evaporation of sessile droplets coupled with interfacial cooling effect // Langmuir. 2018. V. 34. № 23. P. 6955–6962. https://doi.org/10.1021/acs.langmuir.7b03862
  3. Misyura S.Y., Kuznetsov G.V., Volkov R.S., Morozov V.S. Droplet evaporation on a structured surface: The role of near wall vortexes in heat and mass transfer // Int. J. Heat Mass Transfer. 2020. V. 148. P. 119126. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119126
  4. Gibbons M.J., Di Marco P., Robinson A.J. Local heat transfer to an evaporating superhydrophobic droplet // Int. J. Heat Mass Transfer. 2018. V. 121. P. 641–652. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.007
  5. Boinovich L.B., Emelyanenko A.M., Emelyanenko K.A., Modin E.B. Modus operandi of protective and anti-icing mechanisms underlying the design of longstanding outdoor icephobic coatings // ACS Nano. 2019. V. 13. № 4. P. 4335–4346. https://doi.org/10.1021/acsnano.8b09549
  6. Yamada Y., Isobe K., Horibe A. Analysis of evaporation of droplet pairs by a quasi-steady-state diffusion model coupled with the evaporative cooling effect // Langmuir. 2023. V. 39. № 44. P. 15587–15596. https://doi.org/10.1021/acs.langmuir.3c01893
  7. Ni Q., Lu W., Liu B., He J., Ling X. New insights into intermittent spray cooling for high-power electronics applications // Appl. Therm. Eng. 2025. V. 261. P. 125148. https://doi.org/10.1016/j.applthermaleng.2024.125148
  8. Navaei I., Rajabi Zargarabadi M., Rashidi S. The effects of water spray characteristics on the performance of a photovoltaic panel // J. Therm. Anal. Calorim. 2024. V. 149. P. 14373–14387. https://doi.org/10.1007/s10973-024-13761-w
  9. Chulkova E.V., Emelyanenko K.A., Emelyanenko A.M., Boinovich L.B. Elimination of wetting study flaws in unsaturated vapors based on Laplace fit parameters // Surf. Innov. 2022. V. 10. № 1. P. 21–24. https://doi.org/10.1680/jsuin.21.00012
  10. Fuchs N.A. Evaporation and droplet growth in gaseous media. Pergamon Press, London, 1959.
  11. Boinovich L.B., Emelyanenko A.M. Recent progress in understanding the anti-icing behavior of materials // Adv. Colloid Interface Sci. 2024. V. 323. P. 103057. https://doi.org/10.1016/j.cis.2023.103057
  12. Jung S., Tiwari M.K., Doan N.V., Poulikakos D. Mechanism of supercooled droplet freezing on surfaces // Nat. Commun. 2012. V. 3. P. 615. https://doi.org/10.1038/ncomms1630
  13. Bhardwaj R. Analysis of an evaporating sessile droplet on a non-wetted surface // Colloid Interface Sci. Commun. 2018. V. 24. P. 49–53. https://doi.org/10.1016/j.colcom.2018.02.004
  14. Albernaz D.L., Amberg G., Do-Quang M. Simulation of a suspended droplet under evaporation with Marangoni effects // Int. J. Heat Mass Transf. 2016. V. 97. P. 853–860. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.073
  15. Nagornov O.V., Starostin N.V. Influence of substrate properties on evaporation of the sessile drop. In: Mastorakis, N., Yau, J. D., Sokolov, V. et al. (Eds.). Advances in Engineering Mechanics and Materials. University Press: Shortlands, Hammersmith, London, UK, 2014. P. 98–100. http://universitypress.org.uk/library/2014/santorini/bypaper/mechanics/mechanics-15.pdf (accessed on August 25, 2021).
  16. Dunn G.J., Wilson S.K., Duffy B.R., David S., Sefiane K. The strong influence of substrate conductivity on droplet evaporation // J. Fluid Mech. 2009. V. 623. P. 329–351. https://doi.org/10.1017/S0022112008005004
  17. Стерлягов А.Н., Низовцев М.И. Экспериментальное исследование испарения капель воды и наножидкости на поверхности материалов с разной теплопроводностью // Коллоидн. журн. 2023. Т. 85. № 1. С. 85–92. https://doi.org/10.31857/S0023291222600511
  18. McHale G., Aqil S., Shirtcliffe N.J., Newton M.I., Erbil H.Y. Analysis of droplet evaporation on a superhydrophobic surface // Langmuir. 2005. V. 21. № 24. P. 11053–11060. https://doi.org/10.1021/la0518795
  19. Kim J.Y., Hwang I.G., Weon B.M. Evaporation of inclined water droplets // Sci. Rep. 2017. V. 7. P. 42848. https://doi.org/10.1038/srep42848
  20. Stauber J.M., Wilson S.K., Duffy B.R., Sefiane K. Evaporation of droplets on strongly hydrophobic substrates // Langmuir. 2015. V. 31. № 12. P. 3653–3660. https://doi.org/10.1021/acs.langmuir.5b00286
  21. Picknett R.G., Bexon R. The evaporation of sessile or pendant drops in still air // J. Colloid Interface Sci. 1977. V. 61. № 2. P. 336–350. https://doi.org/10.1016/0021-9797(77)90396-4
  22. Li G., Flores S.M., Vavilala C., Schmittel M., Graf K. Evaporation dynamics of microdroplets on self-assembled monolayers of dialkyl disulfides // Langmuir. 2009. V. 25. № 23. P. 13438–13447. https://doi.org/10.1021/la901422v
  23. Dash S., Garimella S.V. Droplet evaporation dynamics on a superhydrophobic surface with negligible hysteresis // Langmuir. 2013. V. 29. № 34. P. 10785–10795. https://doi.org/10.1021/la402784c
  24. Sáenz P.J., Wray A.W., Che Z., Matar O.K., Valluri P., Kim J., Sefiane K. Dynamics and universal scaling law in geometrically-controlled sessile drop evaporation // Nat. Commun. 2017. V. 8. P. 14783. https://doi.org/10.1038/ncomms14783
  25. Mehr S.M., Businaro L., Habibi M., Moradi A.R. Collective behavior of evaporating droplets on superhydrophobic surfaces // AIChE J. 2020. V. 66. № 8. P. e16284. https://doi.org/10.1002/aic.16284
  26. Левашов В.Ю., Крюков А.П., Шишкова И.Н. Влияние гомогенной нуклеации на интенсивность процессов испарения/конденсации // Коллоидн. журн. 2024. Т. 86. № 2. С. 218–226. https://doi.org/10.31857/S0023291224020061
  27. Чан К.Т., Дмитриев А.С., Макаров П.Г., Михайлова И.А. Экспериментальное исследование процесса испарения капель наножидкостей на подложке под действием солнечного излучения // Коллоидн. журн. 2023. Т. 85. № 6. С. 837–848. https://doi.org/10.31857/S0023291223600761
  28. Schatz M.F., Neitzel G.P. Experiments on thermocapillary instabilities // Annu. Rev. Fluid Mech. 2001. V. 33. P. 93–127. https://doi.org/10.1146/annurev.fluid.33.1.93
  29. Bouchenna C., Saada M.A., Chikh S., Tadrist L. Investigation of thermo-capillary flow inside an evaporating pinned water droplet // Interfacial Phenomena and Heat Transfer. 2015. V. 3. № 2. P. 185–201. https://doi.org/10.1615/InterfacPhenomHeatTransfer.2015013344
  30. Xu X., Luo J. Marangoni flow in an evaporating water droplet // Appl. Phys. Lett. 2007. V. 91. № 12. P. 124102. https://doi.org/10.1063/1.2789402
  31. Larson R.G. Transport and deposition patterns in drying sessile droplets // AIChE J. 2014. V. 60. № 5. P. 1538−1571. https://doi.org/10.1002/aic.14338
  32. Josyula T., Wang Z., Askounis A., Orejon D., Harish S., Takata Y., Mahapatra P.S., Pattamatta A. Evaporation kinetics of pure water drops: Thermal patterns, Marangoni flow, and interfacial temperature difference // Phys. Rev. E. 2018. V. 98. P. 052804. https://doi.org/10.1103/PhysRevE.98.052804
  33. Boinovich L.B., Emelyanenko A.M. Hydrophobic materials and coatings: Principles of design, properties and applications // Russ. Chem. Rev. 2008. V. 77. № 7. P. 619–638. https://doi.org/10.1070/RC2008v077n07ABEH003775
  34. Popov Y.O. Evaporative deposition patterns: Spatial dimensions of the deposit. Phys. Rev. E. 2005. V. 71. P. 036313. https://doi.org/10.1103/PhysRevE.71.036313
  35. Sataeva N.E., Boinovich L.B., Emelyanenko K.A., Domantovsky A.G., Emelyanenko A.M. Laser-assisted processing of aluminum alloy for the fabrication of superhydrophobic coatings withstanding multiple degradation factors // Surf. Coat. Technol. 2020. V. 397. P. 125993. https://doi.org/10.1016/j.surfcoat.2020.125993
  36. Emelyanenko A.M., Boinovich L.B. The role of discretization at the video image processing of sessile and pendant drop profiles // Colloids Surf. A. 2001. V. 189. № 1–3. P. 197–202. https://doi.org/10.1016/S0927-7757(01)00585-4
  37. Vinš V., Fransen M., Hykl J., Hrubý J. Surface tension of supercooled water determined by using a counterpressure capillary rise method // J. Phys. Chem. B. 2015. V. 119. № 17. P. 5567–5575. https://doi.org/10.1021/acs.jpcb.5b00545
  38. Asada S., Sotani T., Arabas J., Kubota H., Matsuo S., Tanaka Y. Density of water at subzero temperature under high pressure: Measurements and correlation // J. Phys. Cond. Mat. 2002. V. 14. P. 11447–11452. https://doi.org/10.1088/0953-8984/14/44/498
  39. Гурвич Л.В., Вейц И.В. и др. Термодинамические свойства индивидуальных веществ. Справочное издание в 4-х томах. Отв. ред. Глушко В.П. Москва: Наука. 1978.
  40. Schutzius T.M., Jung S., Maitra T., Eberle P., Antonini C., Stamatopoulos C., Poulikakos D. Physics of icing and rational design of surfaces with extraordinary icephobicity // Langmuir. 2015. V. 31. № 17. P. 4807–4821. https://doi.org/10.1021/la502586a
  41. Boinovich L.B., Emelyanenko A.M. Anti-icing potential of superhydrophobic coatings // Mendeleev Commun. 2013. V. 23. № 1. P. 3–10. https://doi.org/10.1016/j.mencom.2013.01.002
  42. Heydari G., Thormann E., Jarn M., Tyrode E., Claesson P.M. Hydrophobic surfaces: Topography effects on wetting by supercooled water and freezing delay // J. Phys. Chem. C. 2013. V. 117. № 42. P. 21752–21762. https://doi.org/10.1021/jp404396m
  43. Emelyanenko A.M., Boinovich L.B., Bezdomnikov A.A., Chulkova E.V., Emelyanenko K.A. Reinforced superhydrophobic coating on silicone rubber for longstanding anti-icing performance in severe conditions // ACS Appl. Mater. Interfaces. 2017. V. 9. № 28. P. 24210–24219. https://doi.org/10.1021/acsami.7b05549
  44. Boinovich L.B., Emelyanenko A.M., Korolev V.V., Pashinin A.S. Effect of wettability on sessile drop freezing. When the superhydrophobicity stimulates extreme freezing delay // Langmuir. 2014. V. 30. № 6. P. 1659–1668. https://doi.org/10.1021/la403796g

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025