Paracetamol hepatotoxicity against the background of chronic stress: morphology and antioxidant gene activity in rats

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Introduction. The study is devoted to the investigation of the effect of chronic stress on the toxic effect of paracetamol on the liver in rats. Paracetamol, widely used as an analgesic and antipyretic, can cause hepatotoxicity associated with the formation of reactive oxygen species and the development of oxidative stress when overdosed. Antioxidant mechanisms of the body’s defense include key genes such as Hmox1, Sod1, and Nqo1, which regulate the redox balance. Chronic stress reduces glutathione levels, which increases the vulnerability of the liver to toxic effects. The purpose of the work is to assess the toxicity of paracetamol in rats under the influence of chronic stress to develop new preventive approaches.Materials and methods. The experiment involved four groups of white outbred rats (6 males and 6 females), which were administered paracetamol (1000 mg/kg) and modelled chronic stress. Results. Morphological, biochemical, and genetic analyses were performed, and the liver weight coefficient was detected. In males, the liver weight coefficient varied: the minimum value (25.02) was recorded in the Stress group, the maximum (32.27) in the control group (p=0.001). In females in the «Stress» group, it was 34.77, which is lower compared to the «Paracetamol» (39.21; p=0.017) and «Paracetamol+Stress» (39.24; p=0.026) groups. Histomorphological analysis revealed signs of necrosis and inflammation with combined exposure. Genetic analysis showed an increase in Sod1 gene expression in males in the «Stress» group (p=0.001) and the highest Nqo1 level in the group with combined exposure to factors. Biochemical changes included decreased AST and ALT levels under stress and paracetamol.Limitations. For the experiment, laboratory animals of one biological species were used, and the toxicant was used in the only one concentration.Conclusion. The obtained results highlight the need for further study of the interaction of chronic stress and toxic factors for the development of preventive measures.Compliance with ethical standards. The study protocol was approved by the local ethics committee of the Ufa Research Institute of Occupational Medicine and Human Ecology (Approval No. 01-02 from 08.02.2024). Throughout the study, the animals were kept in standard conditions with 12-hour artificial lighting during the daytime, a relatively constant level of humidity (30–70%) and an air temperature of 20–25 °C. All animal manipulations were carried out in strict compliance with the rules prescribed in the basic regulatory documents, including the European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes (Strasbourg, 1986) and the Helsinki Declaration on the Humane Treatment of Animals.Contribution: Gizatullina A.A. – study concept and design, collection and processing of material, statistical processing, writing the text; Karimov D.O. – study concept and design, statistical processing; Yakupova T.G., Ryabova Yu.V., Kudoyarov E.R., Khusnutdinova N.Yu. – collection and processing of material; Valova Ya.V. – collection and processing of material, statistical processing; Smolyankin D.A. – editing. All authors are responsible for the integrity of all parts of the manuscript and approval of the manuscript final version.Conflict of interest. The authors declare no conflict of interest.Funding. Industry research program of the Federal Service for Supervision in Protection of the Rights of Consumer and Man Wellbeing (Rospotrebnadzor) for 2021–2025 “Scientific substantiation of the national system for ensuring sanitary and epidemiological welfare, managing health risks and improving the quality of life of the population of Russia”, on the topic: 6.9.1.2 “Study of the impact of chemical production factors under conditions of chronic stress” No. NIOKTR I124021200153-3.Received: January 30, 2025 / Revised: March 5, 2025 / Accepted: March 26, 2025 / Published: June 27, 2025

References

  1. Коваленко Л.А., Ипатова М.Г., Долгинов Д.М., Афуков И.И. Острое отравление парацетамолом (ацетаминофеном) у детей. Эффективная фармакотерапия. 2018; (32): 14–8. https://elibrary.ru/sjvpct
  2. Chidiac A.S., Buckley N.A., Noghrehchi F., Cairns R. Paracetamol (acetaminophen) overdose and hepatotoxicity: mechanism, treatment, prevention measures, and estimates of burden of disease. Expert Opin. Drug Metab. Toxicol. 2023; 19(5): 297–317. https://doi.org/10.1080/17425255.2023.2223959
  3. Ивашкин В.Т., Барановский А.Ю., Райхельсон К.Л., Пальгова Л.К., Маевская М.В., Кондрашина Э.А. и др. Лекарственные поражения печени (клинические рекомендации для врачей). Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2019; 29(1): 101–31. https://doi.org/10.22416/1382-4376-2019-29-1-101-131 https://elibrary.ru/zerhtf
  4. Minsart C., Liefferinckx C., Lemmers A., Dressen C., Quertinmont E., Leclercq I., et al. New insights in acetaminophen toxicity: HMGB1 contributes by itself to amplify hepatocyte necrosis in vitro through the TLR4-TRIF-RIPK3 axis. Sci. Rep. 2020; 10(1): 5557. https://doi.org/10.1038/s41598-020-61270-1
  5. Крылов Д.П., Родимова С.А., Карабут М.М., Кузнецова Д.С. Экспериментальные модели для изучения структурно-функционального состояния патологически измененной печени (обзор). Современные технологии в медицине. 2023; 15(4): 65. https://doi.org/10.17691/stm2023.15.4.06
  6. Du K., Ramachandran A., Jaeschke H. Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential. Redox. Biol. 2016; 10: 148–56. https://doi.org/10.1016/j.redox.2016.10.001
  7. Променашева Т.Е., Колесниченко Л.С., Козлова Н.М. Роль оксидативного стресса и системы глутатиона в патогенезе неалкогольной жировой болезни печени. Бюллетень Восточно-Сибирского научного центра Сибирского отделения Российской академии медицинских наук. 2014; (5): 80–3. https://elibrary.ru/tmencj
  8. Vairetti M., Di Pasqua L.G., Cagna M., Richelmi P., Ferrigno A., Berardo C. Changes in glutathione content in liver diseases: an update. Antioxidants (Basel). 2021; 10(3): 364. https://doi.org/10.3390/antiox10030364
  9. Тимашева Г.В., Байгильдин С.С., Бакиров А.Б., Репина Э.Ф., Каримов Д.О., Хуснутдинова Н.Ю. и др. Морфологические изменения в печени экспериментальных животных на ранних сроках после коррекции воздействия высоких доз парацетамола. Токсикологический вестник. 2022; 30(1): 21–8. https://doi.org/10.47470/0869-7922-2022-30-1-21-28 https://elibrary.ru/lkoafi
  10. Matisz C.E., Badenhorst C.A., Gruber A.J. Chronic unpredictable stress shifts rat behavior from exploration to exploitation. Stress. 2021; 24(5): 635–44. https://doi.org/10.1080/10253890.2021.1947235
  11. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001; 25(4): 402–8. https://doi.org/10.1006/meth.2001.1262
  12. Davidson D.G., Eastham W.N. Acute liver necrosis following overdose of paracetamol. Br. Med. J. 1966; 2(5512): 497–9. https://doi.org/10.1136/bmj.2.5512.497
  13. Белых А.Е., Дудка В.Т., Бобынцев И.И., Крюков А.А. Морфология печени крыс в условиях хронического эмоционально-болевого стресса на фоне введения дельта-сон индуцирующего пептида. Современные проблемы науки и образования. 2017; (1): 49. https://elibrary.ru/xxncej
  14. Gonçalves A.C., Coelho A.M., da Cruz Castro M.L., Pereira R.R., da Silva Araújo N.P., Ferreira F.M., et al. Modulation of paracetamol-induced hepatotoxicity by acute and chronic ethanol consumption in mice: a study pilot. Toxics. 2024; 12(12): 857. https://doi.org/10.3390/toxics12120857
  15. Mossanen J.C., Tacke F. Acetaminophen-induced acute liver injury in mice. Lab. Anim. 2015; 49(1 Suppl.): 30–6. https://doi.org/10.1177/0023677215570992
  16. Solar M., Grayck M.R., McCarthy W.C., Zheng L., Lacayo O.A., Sherlock L.G., et al. Absence of IκBβ/NFκB signaling does not attenuate acetaminophen-induced hepatic injury. Anat. Rec. (Hoboken). 2025; 308(4): 1251–64. https://doi.org/10.1002/ar.25126
  17. Wang Y.Q., Geng X.P., Wang M.W., Wang H.Q., Zhang C., He X., et al. Vitamin D deficiency exacerbates hepatic oxidative stress and inflammation during acetaminophen-induced acute liver injury in mice. Int. Immunopharmacol. 2021; 97: 107716. https://doi.org/10.1016/j.intimp.2021.107716
  18. Chatterjee S., Bhattacharya S., Choudhury P.R., Rahaman A., Sarkar A., Talukdar A.D., et al. Drynaria quercifolia suppresses paracetamol‑induced hepatotoxicity in mice by inducing Nrf-2. Bratisl. Lek. Listy. 2022; 123(2): 110–9. https://doi.org/10.4149/BLL_2022_017
  19. Toyoda T., Cho Y.M., Akagi J.I., Mizuta Y., Matsushita K., Nishikawa A., et al. A 13-week subchronic toxicity study of acetaminophen using an obese rat model. J. Toxicol. Sci. 2018; 43(7): 423–33. https://doi.org/10.2131/jts.43.423
  20. Ogiso T., Fukami T., Zhongzhe C., Konishi K., Nakano M., Nakajima M. Human superoxide dismutase 1 attenuates quinoneimine metabolite formation from mefenamic acid. Toxicology. 2021; 448: 152648. https://doi.org/10.1016/j.tox.2020.152648
  21. Maeda H., Fujita K., Kobayashi H., Ushiki J., Nakanishi T., Tamai I. Novel LC-MS/MS method for simultaneous quantification of KW-7158, a new drug candidate for urinary incontinence and bladder hyperactivity, and its metabolites in rat plasma: a pharmacokinetic study in male and female rats. Arzneimittelforschung. 2012; 62(5): 213–21. https://doi.org/10.1055/s-0032-1301883
  22. Scholl J.L., Afzal A., Fox L.C., Watt M.J., Forster G.L. Sex differences in anxiety-like behaviors in rats. Physiol. Behav. 2019; 211: 112670. https://doi.org/10.1016/j.physbeh.2019.112670
  23. Bossers G.P.L., Hagdorn Q.A.J., Koop A.C., van der Feen D.E., Bartelds B., van Leusden T., et al. Female rats are less prone to clinical heart failure than male rats in a juvenile rat model of right ventricular pressure load. Am. J. Physiol. Heart Circ. Physiol. 2022; 322(6): H994–1002. https://doi.org/10.1152/ajpheart.00071.2022
  24. Стекольников А.А., Решетняк В.В., Бурдейный В.В., Искалиев Е.А. Биохимические показатели крови беспородных крыс. Международный вестник ветеринарии. 2020; (3): 163–8. https://doi.org/10.17238/issn2072-2419.2020.3.163 https://elibrary.ru/vqffbr
  25. Малинин М.Л., Тихомирова Е.И., Обух Л.Б., Кияшко В.В., Ласкавый В.Н. Половые различия по биохимическим показателям крови у разных видов лабораторных животных. Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2008; 8(1): 51–4. https://elibrary.ru/jwazqh

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.