The use of agents based on the bacterium Bacillus thuringiensis var. israelensis for mosquito control

Cover Page

Cite item

Full Text

Abstract

Mosquito control is necessary to improve the epidemic and, consequently, the sanitary and hygienic situation in human settlements. At the same time, the safest and more environmentally friendly way of controlling is not the fight against adult mosquitoes, but the treatment of reservoirs with microbiological larvicides based on entomopathogenic, aerobic, spore-forming, saprophytic bacteria Bacillus thuringiensis (de Barjac) (Bti). A new serotype of the bacterium B. thuringiensis was found in Israel in the Negev desert. This serotype being more active against larvae of blood-sucking and non-blood-sucking mosquitoes and midges than previously known serotypes, was named israelensis. Bti endotoxin is a typical insecticide with intestinal type of action for different mosquito species. For example, Bti H14 is highly insecticidal to the larvae of Aedes aegypti and Ae. albopictus at very low concentrations. The parasporal body (endotoxin crystal), a crystalline protein consisted of four main polypeptides and two minor polypeptides, possesses of a larvicidal action. Larvicidal activity is associated with a synergistic effect in a combination of four polypeptides. The possibility of development of resistance to products based on Bti and Bacillus sphaericus in populations of mosquitoes (Culicidae) was investigated. The use of domestic microbiological formulations based on Bti («Baktitsid», «Larviol-pasta», and «Antinat») was shown an eradication the larvae of bloodsucking mosquitoes and midges to be possible and rational, since they are not generated resistant populations of mosquitoes. This is confirmed by more than 30 years of the use of such formulations.

About the authors

Svetlana A. Roslavtseva

Research Institute of Disinfectology of the Federal Service for the Oversight of Consumer Protection and Welfare

Author for correspondence.
Email: roslavcevaca@mail.ru

MD, Ph.D., DSci., professor, Head of the Laboratory of Disinsection Problems, Research Institute of Disinfectology of the Federal Service for the Oversight of Consumer Protection and Welfare, Moscow, 117246, Russian Federation.

e-mail: roslavcevaca@mail.ru

Russian Federation

References

  1. Shandala M.G. Topical issues of general disinfectology (selected lectures). Moscow: Meditsina; 2009. 110 p. (in Russian)
  2. Chang C., Dai S.-M., Frutos R. et al. Properties of a 72-kilodalton mosquitocidal protein from Bacillus thuringiensis subsp. morrisoni PG-14 expressed in B. thuringiensis subsp. kurstaki by using the shuttle vector pHT3101. Appl Environ Microbiol. 1992; 58 (2): 507–12.
  3. The list of pesticides and agrochemicals approved for use on territory of the Russian Federation. 2010. Reference book. Moscow; 2011. (Supplement to journal “Plant Protection and Quarantine|”), 2010; 6: 6–16. (in Russian)
  4. Goldberg L.J., Margalit J. A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univittatus, Aedes aegypti and Culex pipiens. Mosq News. 1977; 37 (3): 355–8.
  5. Margalit J. Discovery of Bacillus thuringiensis israelensis. In: H. de Barjac and D.J. Sutherland (eds.). Bacterial control of mosquitoes & black flies. Biochemistry, genetics & applications of Bacillus thuringiensis israelensis and Bacillus sphaericus. London, UK: Unwin Hyman; 1990: 3–9.
  6. de Barjac H. A new subspecies of Bacillus thuringiensis very toxic for mosquitoes: Bacillus thuringiensis var. israelensis serotype 14. Paris: C. R. Acad. Sci. 1978; 286D: 797–800.
  7. Lee M.H., Pe T.H., Cheong W.H. Laboratory evaluation of the persistence of Bacillus thuringiensis var. israelensis against Aedes aegypti larvae. Mosq Borne Dis. Bull. 1986; 2: 61–6.
  8. Becker N., Margalit J. Use of Bacillus thuringiensis var. israelensis against mosquitoes and black flies. Entwistle P.F., Cory J.S., Baily M.J., Higg S.R. (eds.). Bacillus thuringiensis, an environmental biopesticide: Theory and practice. New York: Wiley and Sons; 1993: 147–70.
  9. Federici B.A., Lüthy P., Ibarra J.E. Parasporal body of Bacillus thuringiensis israelensis: structure, protein composition, and toxicity. In: H. de Barjac, D.J. Sutherland (eds.). Bacterial control of mosquitoes & black flies. Biochemistry, genetics & applications of Bacillus thuringiensis israelensis and Bacillus sphaericus. London, UK: Unwin Hyman; 1990: 16–44.
  10. Bulla Jr. L.A., Bechtel D.B., Kramer K.J. et al. Ultrastructure, physiology and biochemistry of Bacillus thuringiensis. CRC Crit. Rev. Microbiol. 1980; 8 (2): 147–204.
  11. Kumar P.A., Sharma R.P., Malik V.S. The insecticidal proteins of Bacillus thuringiensis. Adv Appl Microbiol. 1996; 42: 1–12, 12A, 13–43.
  12. Shternshis M.V. Factors of optimization of entomopathogenic formulations for plant protection. Autoabstract of Diss. Leningrad; 1989. 32 P.
  13. Kamenek L.K. Delta-endotoxin of Bacillus thuringiensis: structure, features, and use in plant protection. Autoabstract of Diss. Moscow; 1998. 40 p. (in Russian)
  14. Davidson E.W. Microbiology, pathology and genetics of Bacillus sphaericus: biological aspects which are important to field use. Mosq News. 1984; 44 (2, Pt. 1): 147–52.
  15. Baumann P., Clark M.A., Baumann L., Broadwell A.H. Bacillus sphaericus as a mosquito pathogen: properties of the organism and its toxins. Microbiol. Rev. 1991; 55 (3): 425–36.
  16. Baumann P., Unterman B.M.., Baumann L. et al. Purification of the larvicidal toxin of Bacillus sphaericus and evidence for high-molecular-weight precursors. J Bacteriol. 1985; 163(2): 738–47.
  17. Payne J.M., Davidson E.W. Insecticidal activity of the crystalline parasporal inclusions and other components of the Bacillus sphaericus 1593 spore complex. J Invertebr Pathol. 1984; 43 (3): 383–8.
  18. Nielsen-Leroux С., Charles J.-F., Thiéry I., Georghiou G.P. Resistance in a laboratory population of Culex quinquefasciatus (Diptera: Culicidae) to Bacillus sphaericus binary toxin is due to a change in the receptor on midgut brush-border membranes. Eur J Biochem. 1995; 228 (1): 206–10.
  19. Goldman I.F., Arnold J., Carlton B.C. Selection for resistance to Bacillus thuringiensis subspecies israelensis in field and laboratory populations of the mosquito Aedes aegypti. J Invertebr Pathol. 1986; 47 (3): 317–24.
  20. Georghiou G.P., Malik J.I., Wirth M., Sainato K. Characterization of resistance of Culex quinquefasciatus to the insecticidal toxins of Bacillus sphaericus (strain 2362). University of California, Mosquito Control Research, annual report 1992. Riverside, CA: Univ. of California Press; 1992.
  21. Becker N., Ludwig M. Investigations on possible resistance in Aedes vexans field populations after a 10-year application of Bacillus thuringiensis israelensis. J Am Mosq Control Assoc. 1994; 9(2): 221–4.
  22. Margalit J., Zaritsky A., Barak Z. et al. Bacillus thuringiensis (Bti) in integrated biological control (IBC) of mosquitoes and black flies – a global view. S.S. Caglar, B. Alten and N. Özer (eds.). Proceedings of the 13th European SOVE Meetings, Society for Vector Ecology. 2000, Sept. Belek. Ankara: DTO; 2000: 84–98.
  23. Marcombe S., Farajollahi A., Healy S.P. et al. Insecticide resistance status of United States populations of Aedes albopictus and mechanisms involved. PLoS ONE [Electronic resource]. 2014; 9 (7): е101992. Mode of access: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0101992&type=printable (accessed 5.07.2019).
  24. Mohiddin A., Lasim A.Md., Zuharah W.F. Susceptibility of Aedes albopictus from dengue outbreak areas to temephos and Bacillus thuringiensis subsp. israelensis. Asian Pac J Trop Biomed. 2016; 6 (4): 295–300.
  25. Lee H.-L., Cheong W.H. Laboratory evaluation of the potential efficacy of Bacillus thuringiensis israelensis for the control of mosquitoes in Malaysia. Trop Biomed. 1985; 2: 133–7.
  26. Lee H.-L. Germ warfare against mosquitoes. What now? In: C.-Y. Lee, W.H. Robinson (eds.). Proceedings of the 5th International conference on urban pests. 2005, July 10–13; Suntec; Singapore. Penang, Malaysia: Perniagaan Ph’ng@P&Y Design Network; 2005: 9–18.
  27. Müller P., Engeler L., Flacio E. et al. Surveillance and control of Aedes albopictus (Diptera: Culicidae) in Switzerland. G. Müller, R. Pospischil, W.H. Robinson (eds.). Proceedings of the 8th International conference on urban pests. 2014, July 20–23; Zürich; Switzerland. Veszprém, Hungary: OOK-Press Kft.; 2014: 131–4.
  28. Suter T., Elacio E., Guedes D.R.D. et al. Aedes albopictus resistance status and dynamics across the Swiss-Italian border. G. Müller, R. Pospischil and W.H. Robinson (eds.). Proceedings of the 8th International conference on urban pests. 2014, July 20–23; Zürich; Switzerland. Veszprém, Hungary: OOK-Press Kft.; 2014: 135–9.
  29. Rocha H.D.R., Paiva M.H.S., Silva N.M. et al. Susceptibility profile of Aedes aegypti from Santiago Island, Cabo Verde, to insecticides. Acta Trop. 2015; 152: 66–73.
  30. Roslavtseva S.A., Alekseev M.A. Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus in Russia. M.P. Davies, C. Pfeiffer and W.H. Robinson (eds.). Proceedings of the 9th International conference on urban pests. 2017, July 9–12; Birmingham; UK. Uckfield, East Sussex, UK: Pureprint Group; 2017: 437.
  31. Zhulev A.I., Smirnov V.S. Use of aircraft for monitoring and regulation of number of mosquitoes carriers of causative agents of diseases of the person. Dezinfektsionnoye delo [Disinfection Affairs]. 2016; 4 (98): 34–7. (in Russian)
  32. Wirth M.C., Georghiou G.P., Malik J.I., Hussain G. Laboratory selection for resistance to Bacillus sphaericus in Culex quinquefasciatus (Diptera: Culicidae) from California, USA. J Med Entomol. 2000; 37 (4): 534–40.
  33. Sinègre G., Babinot M., Quermel J.-M., Gaven B. First field occurrence of Culex pipiens resistance to Bacillus sphaericus in southern France. Proceedings of the 8th European Meeting of Society for Vector Ecology. 1994, Sept. 3–8; Barselona; Spain. Santa Ana, CA: Society for Vector Control; 1994: 17.
  34. Chevillon C., Bernard C., Marquine M., Pasteur N. Resistance to Bacillus sphaericus in Culex pipiens (Diptera: Culicidae): interaction between recessive mutants and evolution in the Southern France. J Med Entomol. 2001; 38 (5): 657–64.
  35. Nielsen-Leroux C., Pasteur N., Prètre J. et al. High resistance to Bacillus sphaericus binary toxin in Culex pipiens (Diptera: Culicidae): the complex situation of West Mediterranean countries. J Med Entomol. 2002; 39 (5): 729–35.
  36. Rao D.R., Mani T.R., Rajendran R. et al. Development of a high level of resistance to Bacillus sphaericus in a field population of Culex quinquefasciatus from Kochi, India. J Am Mosq Control Assoc. 1995; 11 (1): 1–5.
  37. Oliveira C.M.F., Silva-Filhа M.H., Nielsen-Leroux C. et al. Inheritance and mechanism of resistance to Bacillus sphaericus in Culex quinquefasciatus (Diptera: Culicidae) from China and Brazil. J Med Entomol. 2004; 41 (1): 58–64.
  38. Yuan Z., Zhang Y., Cai Q., Liu E-Y. High level field resistance to Bacillus sphaericus C3-41 in Culex quinquefasciatus from southern China. Biocontrol Sci Technol. 2000; 10 (1): 41–9.
  39. Becker N. Microbial control of mosquitoes: Management of the Upper Rhine mosquito population as a model programme. Parasitol. Today. 1997; 13(12): 485–7.
  40. Roslavtseva S.A. Selected lectures on medical disinsection. Moscow: Scientific Research Disinfectology Institute of Rospotrebnadzor; 2017. 204 p. (in Russian)
  41. Roslavceva S.A., Julev A.I., Glupov V.V. et al. Study of possibility of regulating the number of mosquito-midgots in aquatorium of Azov sea in the recreation zone of Eisk town. Dezinfektsionnoye delo [Disinfection Affairs]. 2011; (4): 34–41. (in Russian)
  42. Roslavtseva S.A., Zhulev A.I., Sokolov D.O. et al. Use of the unmanned aerial vehicle “ODONATA AGRO” in medical disinsection. Dezinfektsionnoye delo [Disinfection Affairs]. 2017; 3 (101): 28–32. (in Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Roslavtseva S.A.



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.