Эпигенетика кардиомиопатий: модификации гистонов и метилирование ДНК
- Авторы: Кучер А.Н.1, Назаренко М.С.1
-
Учреждения:
- Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук
- Выпуск: Том 59, № 3 (2023)
- Страницы: 266-282
- Раздел: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://rjsvd.com/0016-6758/article/view/666872
- DOI: https://doi.org/10.31857/S0016675823030086
- EDN: https://elibrary.ru/IPXZDH
- ID: 666872
Цитировать
Аннотация
Кардиомиопатии – активно исследуемая клинически и генетически гетерогенная группа патологий миокарда. В настоящее время общепризнано, что наряду с генетическими факторами эпигенетические механизмы могут быть значимыми в определении как риска развития данной патологии, так и формирования клинических особенностей болезни. В статье приведен обзор научных публикаций, посвященных исследованию модификаций гистонов и ремоделирования хроматина, а также изменений метилирования ДНК при различных формах кардиомиопатий. Большинство работ в этой области сфокусировано на анализе эпигеномного профиля образцов миокарда у пациентов с дилатационной кардиомиопатией. При развитии кардиомиопатии (дилатационной, гипертрофической, ишемической, рестриктивной и аритмогенной) в миокарде происходят изменения на уровне эпигенетических процессов, что приводит к нарушению функциональной активности генов и дисбалансу метаболических путей, в том числе патогенетически значимых для развития заболеваний сердца. В эпигенетические изменения, происходящие в миокарде, вовлечены также гены кардиомиопатий (LMNA, TNNI3, ANKRD1, SLC25A4, EYA4, GATAD1, PRDM16 и DMD). Эпигенетические модификации, а также ферменты, регулирующие эпигенетические процессы, анализируются с точки зрения перспективности их использования для выявления новых значимых для кардиомиопатий молекулярных маркеров и метаболических путей, для разработки диагностических панелей и новых лекарственных препаратов. В то же время высокая клиническая и этиологическая гетерогенность кардиомиопатий, большое число разнообразных и взаимосвязанных эпигенетических процессов, которые происходят как в условиях физиологической нормы, так и в ходе патогенеза заболевания, указывают на необходимость расширения эпигенетических исследований при различных формах кардиомиопатий, в том числе на уровне эпигенома, транскриптома и эпитранскриптома с использованием омиксного анализа единичных клеток миокарда у человека и модельных животных, а также в клеточных линиях при моделировании заболевания.
Ключевые слова
Об авторах
А. Н. Кучер
Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук
Email: maria.nazarenko@medgenetics.ru
Россия, 634050, Томск
М. С. Назаренко
Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук
Автор, ответственный за переписку.
Email: maria.nazarenko@medgenetics.ru
Россия, 634050, Томск
Список литературы
- Jimenez J., Rentschler S.L. Transcriptional and epigenetic regulation of cardiac electrophysiology // Pediatr. Cardiol. 2019. V. 40. № 7. P. 1325–1330. https://doi.org/10.1007/s00246-019-02160-w
- Yu J., Zeng C., Wang Y. Epigenetics in dilated cardiomyopathy // Curr. Opin. Cardiol. 2019. V. 34. № 3. P. 260–269. https://doi.org/10.1097/HCO.0000000000000616
- Schiano C., Benincasa G., Franzese M. et al. Epigenetic-sensitive pathways in personalized therapy of major cardiovascular diseases // Pharmacol. Ther. 2020. V. 210. P. 107514. https://doi.org/10.1016/j.pharmthera.2020.107514
- Napoli C., Coscioni E., de Nigris F., Donatelli F. Emergent expansion of clinical epigenetics in patients with cardiovascular diseases // Curr. Opin. Cardiol. 2021. V. 36. № 3. P. 295–300. https://doi.org/10.1097/HCO.0000000000000843
- Han P., Li W., Yang J. et al. Epigenetic response to environmental stress: Assembly of BRG1-G9a/GLP-DNMT3 repressive chromatin complex on Myh6 promoter in pathologically stressed hearts // Biochim. Biophys. Acta. 2016. V. 1863. № 7. Pt. B. P. 1772–1781. https://doi.org/10.1016/j.bbamcr.2016.03.002
- De Majo F., Calore M. Chromatin remodelling and epigenetic state regulation by non-coding RNAs in the diseased heart // Noncoding RNA Res. 2018. V. 3. № 1. P. 20–28. https://doi.org/10.1016/j.ncrna.2018.02.003
- Zhou Q., Yu B., Anderson C. et al. LncEGFL7OS regulates human angiogenesis by interacting with MAX at the EGFL7/miR-126 locus // Elife. 2019. V. 8. P. e40470. https://doi.org/10.7554/eLife.40470
- Yu J., Yang Y., Xu Z. et al. Long Noncoding RNA ahit protects against cardiac hypertrophy through SUZ12 (Suppressor of Zeste 12 Protein Homolog)-mediated downregulation of MEF2A (Myocyte Enhancer Factor 2A) // Circ. Heart Fail. 2020. V. 13. № 1. P. e006525. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006525
- Pei J., Schuldt M., Nagyova E. et al. Multi-omics integration identifies key upstream regulators of pathomechanisms in hypertrophic cardiomyopathy due to truncating MYBPC3 mutations // Clin. Epigenetics. 2021. V. 13. № 1. P. 61. https://doi.org/10.1186/s13148-021-01043-3
- Ghosh A.K. p300 in cardiac development and accelerated cardiac aging // Aging Dis. 2020. V. 11. № 4. P. 916–926. https://doi.org/10.14336/AD.2020.0401
- Salemi V.M.C., Mohty D., Altavila S.L.L. et al. Insights into the classification of cardiomyopathies: past, present, and future directions // Clinics (Sao Paulo). 2021. V. 76. P. e2808. https://doi.org/10.6061/clinics/2021/e2808
- McKenna W.J., Maron B.J., Thiene G. Classification, epidemiology, and global burden of cardiomyopathies // Circ. Res. 2017. V. 121. № 7. P. 722–730. https://doi.org/10.1161/CIRCRESAHA.117.309711
- МКБ-11 (Международная классификация болезней 11-го пересмотра). [Electronic resource]. URL: https://icd11.ru/ Accessed 03.2022.
- Bhandari B., Quintanilla Rodriguez B.S., Masood W. Ischemic Cardiomyopathy. 2021. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2022.
- Arbustini E., Narula N., Tavazzi L. et al. The MOGE(S) classification of cardiomyopathy for clinicians // J. Am. Coll. Cardiol. 2014. V. 64. № 3. P. 304–318. https://doi.org/10.1016/j.jacc.2014.05.027
- Menon S.C., Michels V.V., Pellikka P.A. et al. Cardiac troponin T mutation in familial cardiomyopathy with variable remodeling and restrictive physiology // Clin. Genet. 2008. V. 74. № 5. P. 445–454. https://doi.org/10.1111/j.1399-0004.2008.01062.x
- Webber S.A., Lipshultz S.E., Sleeper L.A. et al. Outcomes of restrictive cardiomyopathy in childhood and the influence of phenotype: Outcomes of restrictive cardiomyopathy in childhood and the influence of phenotype: A report from the Pediatric Cardiomyopathy Registry // Circulation. 2012. V. 126. № 10. P. 1237–1244. https://doi.org/10.1161/CIRCULATIONAHA.112.10-4638
- Lipshultz S.E., Orav E.J., Wilkinson J.D. et al. Wilkinson J.D. et al. Risk stratification at diagnosis for children with hypertrophic cardiomyopathy: Risk stratification at diagnosis for children with hypertrophic cardiomyopathy: An analysis of data from the Pediatric Cardiomyopathy Registry // Lancet. 2013. V. 382. № 9908. P. 1889–1897. https://doi.org/10.1016/S0140-6736(13)61685-2
- Jefferies J.L., Wilkinson J.D., Sleeper L.A. et al. Cardiomyopathy phenotypes and outcomes for children with left ventricular myocardial noncompaction: Cardiomyopathy phenotypes and outcomes for children with left ventricular myocardial noncompaction: Results from the Pediatric Cardiomyopathy Registry // J. Card. Fail. 2015. V. 21. № 11. P. 877–884. https://doi.org/10.1016/j.cardfail.2015.06.381
- Lee T.M., Hsu D.T., Kantor P. et al. Pediatric cardiomyopathies // Circ. Res. 2017. V. 121. № 7. P. 855–873. https://doi.org/10.1161/CIRCRESAHA.116.309386
- Pérez-Palma E., Gramm M., Nürnberg P. et al. Simple ClinVar: An interactive web server to explore and retrieve gene and disease variants aggregated in ClinVar database // Nucl. Acids Res. 2019. V. 47. № W1. P. W99–W105. https://doi.org/10.1093/nar/gkz411
- Комиссарова С.М., Ринейская Н.М., Чакова Н.Н., Ниязова С.С. Смешанный фенотип: некомпактный миокард левого желудочка и гипертрофическая кардиомиопатия // Кардиология. 2020. Т. 60. № 4. С. 137–145. https://doi.org/10.18087/cardio.2020.4.n728
- Blagova O., Alieva I., Kogan E. et al. Mixed hypertrophic and dilated phenotype of cardiomyopathy in a patient with homozygous in-frame deletion in the MyBPC3 gene treated as myocarditis for a long time // Front. Pharmacol. 2020. V. 11. P. 579450. https://doi.org/10.3389/fphar.2020.579450
- Cipriani A., Perazzolo Marra M., Bariani R. et al. Differential diagnosis of arrhythmogenic cardiomyopathy: Phenocopies versus disease variants // Minerva Med. 2021. V. 112. № 2. P. 269–280. https://doi.org/10.23736/S0026-4806.20.06782-8
- Mattesi G., Cipriani A., Bauce B. et al. Arrhythmogenic left ventricular cardiomyopathy: Genotype-phenotype correlations and new diagnostic criteria // J. Clin. Med. 2021. V. 10. № 10. P. 2212. https://doi.org/10.3390/jcm10102212
- Wang J., Li W., Han Y., Chen Y. Different clinical presentation and tissue characterization in a monozygotic twin pair with MYH7 mutation-related hypertrophic cardiomyopathy // Int. Heart J. 2019. V. 60. № 2. P. 477–481. https://doi.org/10.1536/ihj.18-167
- Frade A.F., Laugier L., Ferreira L.R. et al. Myocardial infarction-associated transcript, a long noncoding RNA, is overexpressed during dilated cardiomyopathy due to chronic Chagas disease // J. Infect. Dis. 2016. V. 214. № 1. P. 161–165. https://doi.org/10.1093/infdis/jiw095
- Mazurek S., Kim G.H. Genetic and epigenetic regulation of arrhythmogenic cardiomyopathy // Biochim. Biophys. Acta Mol. Basis Dis. 2017. V. 863. № 8. P. 2064–2069. https://doi.org/10.1016/j.bbadis.2017.04.020
- Mansueto G., Benincasa G., Della Mura N. et al. Epigenetic-sensitive liquid biomarkers and personalised therapy in advanced heart failure: a focus on cell-free DNA and microRNAs // J. Clin. Pathol. 2020. V. 73. № 9. P. 535–543. https://doi.org/10.1136/jclinpath-2019-206404
- Calderon-Dominguez M., Belmonte T., Quezada-Feijoo M. et al. Emerging role of microRNAs in dilated cardiomyopathy: evidence regarding etiology // Transl. Res. 2020. V. 215. P. 86–101. https://doi.org/10.1016/j.trsl.2019.08.007
- Pagiatakis C., Di Mauro V. The emerging role of epigenetics in therapeutic targeting of cardiomyopathies // Int. J. Mol. Sci. 2021. V. 22. № 16. P. 8721. https://doi.org/10.3390/ijms22168721
- Ke X., Lin Z., Ye Z. et al. Histone deacetylases in the pathogenesis of diabetic cardiomyopathy // Front. Endocrinol. (Lausanne). 2021. V. 12. P. 679655. https://doi.org/10.3389/fendo.2021.679655
- Mittal A., Garg R., Bahl A., Khullar M. Molecular mechanisms and epigenetic regulation in diabetic cardiomyopathy // Front. Cardiovasc. Med. 2021. V. 8. P. 725532. https://doi.org/10.3389/fcvm.2021.725532
- Scolari F.L., Faganello L.S., Garbin H.I. et al. A systematic review of microRNAs in patients with hypertrophic cardiomyopathy // Int. J. Cardiol. 2021. V. 327. P. 146–154. https://doi.org/10.1016/j.ijcard.2020.11.004
- Guo Y., Feng X., Wang D. et al. Long non-coding RNA: A key regulator in the pathogenesis of diabetic cardiomyopathy // Front. Cardiovasc. Med. 2021 V. 8. P. 655598. https://doi.org/10.3389/fcvm.2021.655598
- Ntelios D., Georgiou E., Alexouda S. et al. A critical approach for successful use of circulating microRNAs as biomarkers in cardiovascular diseases: The case of hypertrophic cardiomyopathy // Heart Fail. Rev. 2022. V. 27. № 1. P. 281–294. https://doi.org/10.1007/s10741-021-10084-y
- ClinGen [Electronic resource]. URL: https://clinicalgenome.org/ Accessed 03.2022.
- UniProt [Electronic resource]. URL: https://www.uniprot.org/ Accessed 03.2022.
- Gherardi S., Bovolenta M., Passarelli C. et al. Transcriptional and epigenetic analyses of the DMD locus reveal novel cis‑acting DNA elements that govern muscle dystrophin expression // Biochim. Biophys. Acta Gene Regul. Mech. 2017. V. 1860. № 11. P. 1138–1147. https://doi.org/10.1016/j.bbagrm.2017.08.010
- Zhang X., Shao X., Zhang R. et al. Integrated analysis reveals the alterations that LMNA interacts with euchromatin in LMNA mutation-associated dilated cardiomyopathy // Clin. Epigenetics. 2021. V. 13. № 1. P. 3. https://doi.org/10.1186/s13148-020-00996-1
- Cheedipudi S.M., Matkovich S.J., Coarfa C. et al. Genomic reorganization of lamin-associated domains in cardiac myocytes is associated with differential gene expression and dna methylation in human dilated cardiomyopathy // Circ. Res. 2019. V. 124. № 8. P. 1198–1213. https://doi.org/10.1161/CIRCRESAHA.118.314177
- Zhao W., Qian Lu, Luo J. et al. Cardiac troponin I R193H mutant interacts with HDAC1 to repress phosphodiesterase 4D expression in cardiomyocytes // Genes Dis. 2020. V. 8. № 4. P. 569–579. https://doi.org/10.1016/j.gendis.2020.01.004
- Simple ClinVar [Electronic resource]. URL: https://simple-clinvar.broadinstitute.org/ Accessed 03.2022.
- Shah P.P., Lv W., Rhoades J.H. et al. Pathogenic LMNA variants disrupt cardiac lamina-chromatin interactions and derepress alternative fate genes // Cell Stem Cell. 2021. V. 28. № 5. P. 938–954.e9. https://doi.org/10.1016/j.stem.2020.12.016
- Guénantin A.C., Jebeniani I., Leschik J. et al. Targeting the histone demethylase LSD1 prevents cardiomyopathy in a mouse model of laminopathy // J. Clin. Invest. 2021. V. 131. № 1. P. e136488. https://doi.org/10.1172/JCI136488
- Johnston J.R., Selgrade D.F., McNally E.M. Epigenetic reprogramming to prevent genetic cardiomyopathy // J. Clin. Invest. 2021. V. 131. № 1. P. e143684. https://doi.org/10.1172/JCI143684
- Koczor C.A., Lee E.K., Torres R.A. et al. Detection of differentially methylated gene promoters in failing and nonfailing human left ventricle myocardium using computation analysis // Physiol. Genomics. 2013. V. 45. № 14. P. 597–605. https://doi.org/10.1152/physiolgenomics.00013.2013
- Pepin M.E., Ha C.M., Crossman D.K. et al. Genome-wide DNA methylation encodes cardiac transcriptional reprogramming in human ischemic heart failure // Lab. Invest. 2019. V. 99. № 3. P. 371–386. https://doi.org/10.1038/s41374-018-0104-x
- Zhao W., Wu X., Wang Z. et al. Epigenetic regulation of phosphodiesterase 4d in restrictive cardiomyopathy mice with cTnI mutations // Sci. China Life Sci. 2020. V. 63. № 4. P. 563–570. https://doi.org/10.1007/s11427-018-9463-9
- Liu C.F., Abnousi A., Bazeley P. et al. Global analysis of histone modifications and long-range chromatin interactions revealed the differential cistrome changes and novel transcriptional players in human dilated cardiomyopathy // J. Mol. Cell. Cardiol. 2020. V. 145. P. 30–42. https://doi.org/10.1016/j.yjmcc.2020.06.001
- Zhang W., Qu J., Liu G.H., Belmonte J.C.I. The ageing epigenome and its rejuvenation // Nat. Rev. Mol. Cell. Biol. 2020. V. 21. № 3. P. 137–150. https://doi.org/10.1038/s41580-019-0204-5
- Pal S., Tyler J.K. Epigenetics and aging // Sci. Adv. 2016. V. 2. № 7. P. e1600584. https://doi.org/10.1126/sciadv.1600584
- Yang B., Zhao H., Dong R. MiR-449 improves cardiac function by regulating HDAC1 and cTnI // Eur. Rev. Med. Pharmacol. Sci. 2020. V. 24. № 24. P. 12827–12835. https://doi.org/10.26355/eurrev_202012_24184
- Zhang C.L., McKinsey T.A., Chang S. et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy // Cell. 2002. V. 110. № 4. P. 479–488. https://doi.org/10.1016/s0092-8674(02)00861-9
- Han P., Hang C.T., Yang J., Chang C.P. Chromatin remodeling in cardiovascular development and physiology // Circ. Res. 2011. V. 108. № 3. P. 378–396. https://doi.org/10.1161/CIRCRESAHA.110.224287
- Hohl M., Wagner M., Reil J.C. et al. HDAC4 controls histone methylation in response to elevated cardiac load // J. Clin. Invest. 2013. V. 123. № 3. P. 1359–1370. https://doi.org/10.1172/JCI61084
- Theis J.L., Sharpe K.M., Matsumoto M.E. et al. Homozygosity mapping and exome sequencing reveal GATAD1 mutation in autosomal recessive dilated cardiomyopathy // Circ. Cardiovasc. Genet. 2011. V. 4. № 6. P. 585–594. https://doi.org/10.1161/CIRCGENETICS.111.961052
- Ai S., Peng Y., Li C. et al. EED orchestration of heart maturation through interaction with HDACs is H3K27me3-independent // Elife. 2017. V. 6. P. e24570. https://doi.org/10.7554/eLife.24570
- Kao Y.H., Liou J.P., Chung C.C. et al. Histone deacetylase inhibition improved cardiac functions with direct antifibrotic activity in heart failure // Int. J. Cardiol. 2013. V. 168. № 4. P. 4178–4183. https://doi.org/10.1016/j.ijcard.2013.07.111
- Montgomery R.L., Davis C.A., Potthoff M.J. et al. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility // Genes Dev. 2007. V. 21. № 14. P. 1790–1802. https://doi.org/10.1101/gad.1563807
- Montgomery R.L., Potthoff M.J., Haberland M. et al. Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice // J. Clin. Invest. 2008. V. 118. № 11. P. 3588–3597. https://doi.org/10.1172/JCI35847
- Ito E., Miyagawa S., Fukushima S. et al. Histone modification is correlated with reverse left ventricular remodeling in nonischemic dilated cardiomyopathy // Ann. Thorac. Surg. 2017. V. 104. № 5. P. 1531–1539. https://doi.org/10.1016/j.athoracsur.2017.04.046
- Fan S., Zhang M.Q., Zhang X. Histone methylation marks play important roles in predicting the methylation status of CpG islands // Biochem. Biophys. Res. Commun. 2008. V. 374. № 3. P. 559–564. https://doi.org/10.1016/j.bbrc.2008.07.077
- Cedar H., Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms // Nat. Rev. Genet. 2009. V. 10. № 5. P. 295–304. https://doi.org/10.1038/nrg2540
- Glezeva N., Moran B., Collier P. et al. Targeted DNA methylation profiling of human cardiac tissue reveals novel epigenetic traits and gene deregulation across different heart failure patient subtypes // Circ. Heart. Fail. 2019. V. 12. № 3. P. e005765. https://doi.org/10.1161/CIRCHEARTFAILURE.118.00-5765
- Morival J.L.P., Widyastuti H.P., Nguyen C.H.H. et al. DNA methylation analysis reveals epimutation hotspots in patients with dilated cardiomyopathy-associated laminopathies // Clin. Epigenetics. 2021. V. 13. № 1. P. 139. https://doi.org/10.1186/s13148-021-01127-0
- Wu T.T., Ma Y.W., Zhang X. et al. Myocardial tissue-specific Dnmt1 knockout in rats protects against pathological injury induced by Adriamycin // Lab. Invest. 2020. V. 100. № 7. P. 974–985. https://doi.org/10.1038/s41374-020-0402-y
- Fang X., Robinson J., Wang-Hu J. et al. cAMP induces hypertrophy and alters DNA methylation in HL-1 cardiomyocytes // Am. J. Physiol. Cell. Physiol. 2015. V. 309. № 6. P. C425–C436. https://doi.org/10.1152/ajpcell.00058.2015
- Bain C.R., Ziemann M., Kaspi A. et al. DNA methylation patterns from peripheral blood separate coronary artery disease patients with and without heart failure // ESC Heart Fail. 2020. V. 7. № 5. P. 2468–2478. https://doi.org/10.1002/ehf2.12810
- Movassagh M., Choy M.K., Goddard M. et al. Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure // PLoS One. 2010. V. 5. № 1. P. e8564. https://doi.org/10.1371/journal.pone.0008564
- Koczor C.A., Torres R.A., Fields E.J. et al. Thymidine kinase and mtDNA depletion in human cardiomyopathy: Epigenetic and translational evidence for energy starvation // Physiol. Genomics. 2013. V. 45. № 14. P. 590–596. https://doi.org/10.1152/physiolgenomics.00014.2013
- Haas J., Frese K.S., Park Y.J. et al. Alterations in cardiac DNA methylation in human dilated cardiomyopathy // EMBO Mol. Med. 2013. V. 5. № 3. P. 413–429. https://doi.org/10.1002/emmm.201201553
- Jo B.S., Koh I.U., Bae J.B. et al. Methylome analysis reveals alterations in DNA methylation in the regulatory regions of left ventricle development genes in human dilated cardiomyopathy // Genomics. 2016. V. 108. № 2. P. 84–92. https://doi.org/10.1016/j.ygeno.2016.07.001
- Jo B.S., Koh I.U., Bae J.B. et al. Data of methylome and transcriptome derived from human dilated cardiomyopathy // Data Brief. 2016. V. 9. P. 382–387. https://doi.org/10.1016/j.dib.2016.09.006
- Meder B., Haas J., Sedaghat-Hamedani F. et al. Epigenome-wide association study identifies cardiac gene patterning and a novel class of biomarkers for heart failure // Circulation. 2017. V. 136. № 16. P. 1528–1544. https://doi.org/10.1161/CIRCULATIONAHA.117.027355
- Li B., Feng Z.H., Sun H. et al. The blood genome-wide DNA methylation analysis reveals novel epigenetic changes in human heart failure // Eur. Rev. Med. Pharmacol. Sci. 2017. V. 21. № 8. P. 1828–1836.
- Ortega A., Tarazón E., Gil-Cayuela C. et al. ASB1 differential methylation in ischaemic cardiomyopathy: relationship with left ventricular performance in end-stage heart failure patients // ESC Heart Fail. 2018. V. 5. № 4. P. 732–737. https://doi.org/10.1002/ehf2.12289
- Gi W.T., Haas J., Sedaghat-Hamedani F. et al. Epigenetic regulation of alternative mRNA splicing in dilated cardiomyopathy // J. Clin. Med. 2020. V. 9. № 5. P. 1499. https://doi.org/10.3390/jcm9051499
- Watanabe T., Okada H., Kanamori H. et al. In situ nuclear DNA methylation in dilated cardiomyopathy: an endomyocardial biopsy study // ESC Heart Fail. 2020. V. 7. № 2. P. 493–502. https://doi.org/10.1002/ehf2.12593
- Haas J., Frese K.S., Sedaghat-Hamedani F. et al. Energy metabolites as biomarkers in ischemic and dilated cardiomyopathy // Int. J. Mol. Sci. 2021. V. 22. № 4. P. 1999. https://doi.org/10.3390/ijms22041999
- Liu L., Huang J., Liu Y. et al. Multiomics analysis of transcriptome, epigenome, and genome uncovers putative mechanisms for dilated cardiomyopathy // Biomed. Res. Int. 2021. V. 2021. P. 6653802. https://doi.org/10.1155/2021/6653802
- Tabish A.M., Arif M., Song T. et al. Association of intronic DNA methylation and hydroxymethylation alterations in the epigenetic etiology of dilated cardiomyopathy // Am. J. Physiol. Heart. Circ. Physiol. 2019. V. 317. № 1. P. H168–H180. https://doi.org/10.1152/ajpheart.00758.2018
- Zhang P., Li T., Liu Y.Q. et al. Contribution of DNA methylation in chronic stress-induced cardiac remodeling and arrhythmias in mice // FASEB J. 2019. V. 33. № 11. P. 12240–12252. https://doi.org/10.1096/fj.201900100R
- Mittal A., Sharma R., Prasad R. et al. Role of cardiac TBX20 in dilated cardiomyopathy // Mol. Cell. Biochem. 2016. V. 414. № 1–2. P. 129–136. https://doi.org/10.1007/s11010-016-2666-5
- Kmietczyk V., Riechert E., Kalinski L. et al. m6A-mRNA methylation regulates cardiac gene expression and cellular growth // Life Sci. Alliance. 2019. V. 2. № 2. P. e201800233. https://doi.org/10.26508/lsa.201800233
- Moore J.B. 4th, Zhao J., Keith M.C. et al. The epigenetic regulator HDAC1 modulates transcription of a core cardiogenic program in human cardiac mesenchymal stromal cells through a p53-dependent mechanism // Stem Cells. 2016. V. 34. № 12. P. 2916–2929. https://doi.org/10.1002/stem.2471
- Williams A.M., He W., Li Y. et al. Histone deacetylase inhibition attenuates cardiomyocyte hypoxia-reoxygenation injury // Curr. Mol. Med. 2018. V. 18. № 10. P. 711–718. https://doi.org/10.2174/1566524019666190208102729
- Jiang D.S., Yi X., Li R. et al. The histone methyltransferase mixed lineage leukemia (MLL) 3 may play a potential role on clinical dilated cardiomyopathy // Mol. Med. 2017. V. 23. P. 196–203. https://doi.org/10.2119/molmed.2017.00012
- Watson C.J., Horgan S., Neary R. et al. Epigenetic therapy for the treatment of hypertension-induced cardiac hypertrophy and fibrosis // J. Cardiovasc. Pharmacol. Ther. 2016. V. 21. № 1. P. 127–137. https://doi.org/10.1177/1074248415591698
- Pepin M.E., Drakos S., Ha C.M. et al. DNA methylation reprograms cardiac metabolic gene expression in end-stage human heart failure // Am. J. Physiol. Heart Circ. Physiol. 2019. V. 317. № 4. P. H674–H684. https://doi.org/10.1152/ajpheart.00016.2019
- Horvath S. DNA methylation age of human tissues and cell types // Genome Biol. 2013. V. 14. № 10. P. R115. https://doi.org/10.1186/gb-2013-14-10-r115
- Кучер А.Н., Назаренко М.С., Марков А.В. и др. Вариабельность профилей метилирования CpG-сайтов генов микроРНК в лейкоцитах и тканях сосудов при атеросклерозе у человека // Биохимия. 2017. Т. 82. Вып. 6. С. 923–933.
- Forini F., Kusmic C., Nicolini G. et al. Triiodothyronine prevents cardiac ischemia/reperfusion mitochondrial impairment and cell loss by regulating miR30a/p53 axis // Endocrinology. 2014. V. 155. № 11. P. 4581–4590. https://doi.org/10.1210/en.2014-1106
- Mathiyalagan P., Okabe J., Chang L. et al. The primary microRNA-208b interacts with Polycomb-group protein, Ezh2, to regulate gene expression in the heart // Nucl. Acids Res. 2014. V. 42. № 2. P. 790–803. https://doi.org/10.1093/nar/gkt896
- Harikrishnan K.N., Okabe J., Mathiyalagan P., Khan A.W. et al. Sex-based mhrt methylation chromatinizes MeCP2 in the heart // iScience. 2019. V. 17. P. 288–301. https://doi.org/10.1016/j.isci.2019.06.031
- Dal-Pra S., Hodgkinson C.P., Mirotsou M. et al. Demethylation of H3K27 is essential for the induction of direct cardiac reprogramming by miR combo // Circ. Res. 2017. V. 120. № 9. P. 1403–1413. https://doi.org/10.1161/CIRCRESAHA.116.308741
Дополнительные файлы
