Thermal stability of electrical conductivity and mechanical properties of thin wires from aluminum alloys Al–0.25%Zr–(Si, Er, Hf, Nb)

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The thermal stability of thin wires made of aluminum alloys Al-0.25%Zr, additionally alloyed with Si, Er, Hf, Nb, was studied. Cast blanks were obtained by induction casting in vacuum; wire with a diameter of 0.3 mm was obtained by drawing with preliminary deformation treatment of the blanks. The effect of the annealing temperature on the mechanical properties and specific electric resistivity (SER) of aluminum wires has been studied. The microstructure of wires in the recrystallized state is investigated. It is shown that as the annealing temperature increases, there is a monotonous decrease in tensile strength, micro-hardness, and SER. It is established that the ductility of the wire does not monotonously (with a maximum) depend on the annealing temperature. Optimal annealing modes have been determined, providing the best combination of tensile strength, microhardness and SER of aluminum wire.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

I. Shadrina

Lobachevsky State University of Nizhni Novgorod

Хат алмасуға жауапты Автор.
Email: yashadrina@nifti.unn.ru
Ресей, Nizhny Novgorod

A. Bobrov

Lobachevsky State University of Nizhni Novgorod

Email: yashadrina@nifti.unn.ru
Ресей, Nizhny Novgorod

A. Nokhrin

Lobachevsky State University of Nizhni Novgorod

Email: yashadrina@nifti.unn.ru
Ресей, Nizhny Novgorod

N. Berendeev

Lobachevsky State University of Nizhni Novgorod

Email: yashadrina@nifti.unn.ru
Ресей, Nizhny Novgorod

V. Kopylov

Lobachevsky State University of Nizhni Novgorod

Email: yashadrina@nifti.unn.ru
Ресей, Nizhny Novgorod

V. Chuvildeev

Lobachevsky State University of Nizhni Novgorod

Email: yashadrina@nifti.unn.ru
Ресей, Nizhny Novgorod

N. Tabachkova

National Research Technological University MISiS; A.M. Prokhorov Institute of General Physics of the Russian Academy of Sciences

Email: yashadrina@nifti.unn.ru
Ресей, Moscow; Moscow

Әдебиет тізімі

  1. Medvedev A., Arutyunyan A., Lomakin I., Bondarenko A., Kazykhanov V., Enikeev N., Raab G., Murashkin M. Fatigue properties of ulta-fine grained Al–Mg–Si wires with enhanced mechanical strength and electrical conductivity // Metals. 2018. V. 8. Iss. 12. Р. 1034.
  2. Yang C., Masquellier N., Gandiolle C., Sauvage X. Multifunctional properties of composition graded Al wires // Scripta Mater. 2020. V. 189. P. 21–24.
  3. Moisy F., Gueydan A., Sauvage X., Keller C., Guillet A., Nguyen N., Martinez M., Hug E. Elaboration of architectured copper clad aluminum composites by a multi-step drawing process // Mater. Sci. Forum. 2018. V. 941. P. 1914–1919.
  4. Матвеев Ю.А., Гаврилова В.П., Баранов В.В. // Кабели и провода. 2006. № 5. 300. C. 22–23.
  5. Gorokhov Yu., Timofeev V., Pervukhin M., Belokopytov V., Motkov M., Erdineev N., Kosyachenko I., Yakunina O., Strigin A. Manufacturing Technology of Aluminium Wire from Alloy 01417 with Adjusted Level of Mechanical Properties // J. Siberian Federal University. Eng. Techn. 2019. V. 12. P. 842–851.
  6. Murashkin M., Sabirov I., Medvedev A., Enikeev N., Lefebvre W., Valiev R., Sauvage X. Mechanical and electrical properties of an ultrafine grained Al-8.5wt%RE (RE = 5.4wt.%Ce, 3.1wt.%La) alloy processed by severe plastic deformation // Mater. Design. 2016. V. 90. P. 433–442.
  7. Medvedev A., Murashkin M., Enikeev N., Valiev R., Hodgson P., Lapovok R. Enhancement of mechanical and electrical properties of Al-Re alloys by optimizing rare-earth concentration and thermo-mechanical treatment // J. Alloys Compounds. 2018. V. 745. P. 696–704.
  8. Medvedev A., Murashkin M., Enikeev N., Bikhmukhametov I., Valiev R., Hodgson P., Lapovok R. Effect of the eutectic Al-(Ce,La) phase morphology on microstructure, mechanical properties, electrical conductivity and heat resistance of Al-4.5(Ce,La) alloy after SPD and subsequent annealing // J. Alloys Compounds. 2019. V. 796. P. 321–330.
  9. Zhang Yu., Wei F., Mao J., Niu G. The difference of La and Ce as additives of electrical conductivity aluminum alloys // Mater. Characterization. 2019. V. 158. Р. 109963.
  10. Karabay S. Modification of AA-6201 alloy for manufacturing of high conductivity and extra high conductivity wires with property of high tensile stress after artificial aging heat treatment for all-aluminium alloy conductors // Mater. Design. 2006. V. 27. I. 10. P. 821-832.
  11. Cervantes E., Guerrero M., Ramos J., Montes S. Influence of Natural Aging and Cold Deformation on the Mechanical and Electrical Properties of 6201-T81 Aluminum Alloy Wires // MRS Online Proceedings Library. 2010. V. 1275. Р. 309.
  12. Lin G., Zhang Z., Wang H., Zhou K., Wei Yu. Enhanced strength and electrical conductivity of Al-Mg-Si alloy by thermo-mechanical treatment // Mater. Sci. Eng. A. 2016. V. 650. P. 210-217.
  13. Zhao N., Ban Ch., Wang H., Cui J. Optimized Combination of Strength and Electrical Conductivity of Al-Mg-Si Alloy Processed by ECAP with Two-Step Temperature // Materials. 2020. V. 13. Р. 1511.
  14. Han Y., Shao D., Chen B., Peng Z., Zhu Z., Zhang Q., Chen X., Liu G., Li X. Effect of Mg/Si ratio on the microstructure and hardness-conductivity relationship of ultrafine-grained Al-Mg-Si alloys // Journal of Materials Science. 2017. V. 52. P. 1–15.
  15. Murashkin M., Medvedev A., Kazykhanov V., Krokhin A., Raab G., Enikeev N., Valev R. Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al 6101 alloy processed via ECAP-Conform // Metals. 2015. V. 5. P. 2148–2164.
  16. Khangholi S., Javiani M., Maltais A., Chen X. Optimization of mechanical properties and electrical conductivity in Al-Mg-Si 6201 alloys with different Mg/Si ratios // J. Mater. Research. 2020. V. 35. P. 2765–2776.
  17. Yuan W., Liang Zh. Effect of Zr addition on properties of Al-Mg-Si aluminum alloy used for all aluminum alloy conductor // Mater. Design. 2011. V. 32. P. 4195–4200.
  18. Mikhaylovskaya A., Ghayoumabadi M. Superplasticity and mechanical properties of Al-Mg-Si alloy doped with eutectic-forming Ni and Fe, and dispersoid-forming Sc and Zr elements // Mater. Sci. Eng. A. V. 817. Р. 141319.
  19. Alshwawreh N., Alhamarneh B., Altwarah Q., Quandour Sh., Barghout Sh., Ayasrah O. Electrical Resistivity and Tensile Strength Relationship in Heat-Treated All Aluminum Alloy Wire Conductors // Materials. 2021. V. 14. Р. 5738.
  20. Latynina T., Mavlyutov A., Valiev R., Murashkin M., Orlova T. The effect of hardening by annealing in ultrafine-grained Al-0.4Zr alloy: Influence of Zr microadditives // Philosoph. Magazine. 2019. V. 99. Iss. 19. P. 2424–2443.
  21. Belov N., Korotkova N., Akopyan T., Murashkin M., Timofeev V. Structure and properties of Al-0.6wt.%Zr wire alloy manufactured by direct drawing of electromagnetically cast wire rod // Metals. 2020. V. 10. I. 6. Р. 769.
  22. Lamarão P., Oliveira C., Quaresma J. Precipitation hardening in dilute Al-Zr alloys // J. Mater. Research Techn. 2017. V. 7. Iss. 1. P. 66–72.
  23. Alvarez-Antolin F., Amghouz Z., Cofino-Villar A., Gonzalez-Pocino A., Melero M.G. Decrease in Electrical Resistivity below 28 nΩm by Aging in Hyperpreritectic Al-Zr Alloys Treated at High Temperatures // Metals. 2021. V. 11(8). Р. 1171.
  24. Mikhaylovskaya A., Mochugovskiy A., Levchenko V., Tabachkova N., Mufalo W., Portnoy V. Precipitation behavior of L12 Al3Zr phase in Al-Mg-Zr alloy // Mater. Characterization. 2018. V. 139. P. 30–37.
  25. Nes E., Billdal H. The mechanism of discontinuous precipitation of the metastable Al3Zr phase from an Al-Zr solid solution // Acta Metal. 1977. V. 25. P. 1039–1046.
  26. Melton K. The structure and properties of a cold-rolled and annealed Al-0.8wt%Zr alloy // J. Mater. Sci. 1975. V. 10. P. 1651–1654.
  27. Booth-Morrison Ch., Dunand D., Seidman D. Coarsening resistance at 400°C of precipitation-strengthened Al-Zr-Sc-Er alloys // Acta Mater. 2011. V. 59. P. 7029–7042.
  28. Pozdnyakov A., Osipenkova A., Popov D., Makhov S., Napalkov V. Effect of low additions of Y, Sm, Gd, Hf and Er on the structure and hardness of alloy Al-0.2%Zr-0.1%Sc // Metal Sci. Heat Treatment. 2017. V. 58. P. 537–542.
  29. Voroshilov D., Motkov M., Sidelnikov S., Sokolov R., Durnopyanov A., Konstantinov I., Bespalov V., Bermeshev T., Gudkov I., Voroshilova M., Mansurov Yu., Berngardt V. Obtaining Al–Zr–Hf wire using electromagnetic casting, combined rolling-extrusion, and drawing // International J. Light. Mater. Manufacture. 2022. V. 5. P. 352–368.
  30. Li H., Gao Zh., Yin H., Jiang H., Su X., Bin J. Eggects of Er and Zr additions on precipitation and recrystallization of pure aluminum // Scripta Materialia. 2023. V. 68. P. 59–62.
  31. Комельков А.В., Нохрин А.В., Бобров А.А., Швецова А.А., Сахаров Н.В., Фаддеев М.А. Исследование термической стабильности литых проводниковых микролегированных алюминиевых сплавов // ФММ. 2023. Т. 124. № 6. С. 483–491.
  32. Nokhrin A., Nagicheva G., Chuvil’deev V., Kopylov V., Bobrov A., Tabachkova N. Effect of Er, Si, Hf and Nb additives on the thermal stability if microstructure, electrical resistivity and microhardness of fine-grained aluminum alloys of Al-0.25%Zr // Materials. 2023. V. 16. Р. 2114.
  33. Schmid F., Gehringer D., Kremmer T., Cattini L., Uggowitzer P.J., Holec D., Pogatscher S. Stabilization of Al3Zr allotropes in dilute aluminum alloys via the addition of ternary elements // Materialia. 2022. V. 21. Р. 101321.
  34. Матвеев Ю.А., Гаврилова В.П., Баранов В.В. Легкие проводниковые материалы для авиапроводов // Кабели и провода. 2006. № 5. С. 22–24.
  35. Захаров В.В., Фисенко И.А. Влияние деформации на распад твердого раствора скандия в алюминии // Технология легких сплавов. 2020. № 1. С. 44–47.
  36. Чувильдеев В.Н., Нохрин А.В., Смирнова Е.С., Копылов В.И. Исследование механизмов распада твердого раствора в литых и микрокристаллических сплавах системы алюминий-скандий. III. Анализ экспериментальных данных // Металлы. 2012. № 6. С. 82–92.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Tensile diagrams of wire samples No. 1 (a) and No. 5 (b).

Жүктеу (80KB)
3. Fig. 2. Fractographic analysis of wire fractures in the initial state. The numbers in the figures correspond to the alloy numbers in Table 1. SEM.

Жүктеу (595KB)
4. Fig. 3. Dependences of Hv (a), σв (b), ρ (c) on the temperature of 30-minute annealing of aluminum wires.

Жүктеу (155KB)
5. Fig. 4. Al3Zr particles in wires made of alloy No. 2 (a) and No. 5 (b) after annealing at 300°C. TEM.

Жүктеу (877KB)
6. Fig. 5. SEM images of the microstructure of wire No. 2 (a) and No. 5 (b) after annealing at 500°C (30 min). SEM.

Жүктеу (799KB)
7. Fig. 6. Fractographic analysis of fractures of wire samples No. 1 and No. 5 after heat treatment (30 min) at different temperatures. SEM.

Жүктеу (964KB)
8. Fig. 7. Dependence of the tensile strength on the microhardness of the studied aluminum wires.

Жүктеу (34KB)
9. Fig. 8. Diagram “Electroelectric resistance (ρ) – ultimate strength (σв)” for wires (shaded markers) and blanks (light markers).

Жүктеу (85KB)
10. Fig. 9. Diagram “microhardness – resistivity” for wires (light markers) and blanks (filled markers) made of alloys No. 1, 2 and 3.

Жүктеу (69KB)