Spin-orbit coupling in gold nanostructures

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of spin-orbit interaction accounting on the atomic and electronic structure of 0D (clusters), 1D (gold nanotubes), and 2D (monolayer) gold is reported. The relevance of the work lies in the fact that, on the one hand, gold nanostructures are widely used, in particular, in sensorics and medicine, on the other hand, due to limited computing resources, researchers may neglect some effects in the theoretical study of such objects, and it is important to understand what errors may be associated with such neglect. The study was conducted on a large set of objects: six isomers of the Au25 cluster, gold nanotubes of nine different radii, and a flat monolayer of gold, which made it possible to comprehensively evaluate the effect of spin-orbit interaction. It has been shown that the cohesive energies of all but the thinnest of the gold nanotubes range from the cohesive energy of gold nanoclusters to the cohesive energy of a gold monolayer. Accounting for the spin-orbit interaction leads to a decrease in the Au–Au interatomic distances and a change in the electronic structure of gold nanoobjects. At the same time, a significant change in the position of energy levels is possible for nanoclusters, reflecting a change in the cluster structure. For nanotubes and golden, only the splitting of energy levels occurs near the Fermi level.

Full Text

Restricted Access

About the authors

E. R. Sozykina

South Ural State University

Author for correspondence.
Email: sozykinaer@susu.ru
Russian Federation, Chelyabinsk

S. A. Sozykin

South Ural State University

Email: sozykinaer@susu.ru
Russian Federation, Chelyabinsk

References

  1. Liu X., Wei L., Wang X., He S., Yan Y., Li Q.H., Hu C., Ling Y. Flexible strain sensors based on gold nanowire dominoes for human motion detection // Mater. Today Commun. 2023. V. 35. P. 105703.
  2. Zhou F., Shu L., Yimei T., Li W., Hai L., Zhang X., Li Y., Gao F. Wearable electrochemical glucose sensor of high flexibility and sensitivity using novel mushroom-like gold nanowires decorated bendable stainless steel wire sieve // Anal. Chim. Acta. 2024. V. 1288. P. 342148.
  3. Hassan H., Sharma P., Hasan M.R., Singh S., Thakur D., Narang J. Gold nanomaterials – The golden approach from synthesis to applications // Mater. Sci. Energy Technol. 2022. V. 5. P. 375–390.
  4. Kashiwaya S., Shi Y., Lu J., Sangiovanni D.G., Greczynski G., Magnuson M., Andersson M., Rosen J., Hultman L. Synthesis of goldene comprising single-atom layer gold // Nature Synthesis. 2024. V. 3. № 6. P. 744–751.
  5. Al-Otaibi J.S., Mary Y.S., Mary Y.S., Acharjee N., Al-Saadi A.A., Gamberini M.C. Influence of pyramidal M20 (M = Cu, Ag and Au) clusters on SERS and noncovalent interactions toward tuberculosis drug pretomanid (PTD): DFT study // J. Comput. Biophys. Chem. 2024. V. 23. № 1. P. 47–61.
  6. Al-Otaibi J.S., Mary Y.S., Mary Y.S., Al-Saadi A.A. Revealing the adsorption nature of disulfiram on metal clusters (Au, Pt, Ag, Pd, Cu, and Ni): DFT analysis, SERS enhancement and sensor properties // Comput. Theor. Chem. 2024. V. 1235. P. 114543.
  7. López-Estrada O., Mammen N., Laverdure L., Melander M.M., Häkkinen H., Honkala K. Computational criteria for hydrogen evolution activity on ligand-protected Au25-based nanoclusters // ACS Catal. 2023. V. 13. P. 8997–9006.
  8. Sun Z., Wang J., Su L., Gu Z., Wu X.P., Chen W., Ma W. Dynamic evolution and reversibility of a single Au25 nanocluster for the oxygen reduction reaction // J. Am. Chem. Soc. 2024. V. 146. P. 20059–20068.
  9. Katsiev K., Lozova N., Wang L., Sai Krishna K., Li R., Mei W.N., Skrabalak S.E., Kumar C.S.S.R., Losovyj Y. The electronic structure of Au25 clusters: Between discrete and continuous // Nanoscale. 2016. V. 8. P. 14711–14715.
  10. Kim S., Kim H., Lee C., Park I., Kim Y., Moon D., Shim J.H., Ryu S., Park S.S. Au25 cluster-based atomically precise coordination frameworks and emission engineering through lattice symmetry // ACS Nano. 2024. V. 18. P. 29036–29044.
  11. Zhang H., Lin F., Cheng W., Chen Y., Gu N. Hierarchically oriented jellyfish-like gold nanowires film for elastronics // Adv. Funct. Mater. 2023. V. 33. P. 2209760.
  12. Ikeda T. Gold nanowire mesh electrode for electromechanical device // Sci. Rep. 2023. V. 13. P. 16669.
  13. Li K., Yang Y., Xu C., Ye Y., Huang L., Sun L., Cai Y., Zhou W., Ge Y., Li Y., Zhang Q., Wang Y., Liu X. Vertical gold nanowires-based surface-enhanced Raman scattering for direct detection of ocular bacteria // Sensors Actuators B Chem. 2023. V. 380. P. 133381.
  14. Kim T.Y., Hong S.H., Jeong S.H., Bae H., Cheong S., Choi H., Hahn S.K. Multifunctional intelligent wearable devices using logical circuits of monolithic gold nanowires // Adv. Mater. 2023. V. 35. P. 2303401.
  15. German N., Popov A., Ramanavicius A., Ramanaviciene A. Development and practical application of glucose biosensor based on dendritic gold nanostructures modified by conducting polymers // Biosensors. 2022. V. 12. P. 641.
  16. Chang F., Ren K., Li S., Chang F., Ren K., Li S., Su Q., Peng J., Tan J. A voltammetric sensor for bisphenol A using gold nanochains and carbon nanotubes // Ecotoxicol. Environ. Saf. 2023. V. 252. P. 114588.
  17. Ahmed D.S., Mohammed M.K.A. Studying the bactericidal ability and biocompatibility of gold and gold oxide nanoparticles decorating on multi-wall carbon nanotubes // Chem. Pap. Springer International Publishing. 2020. V. 74. P. 4033–4046.
  18. Tomilina O.A., Konshyna A.A., Milyukovaa E.T., Tomilin S.V., Berzhansky V.N. Correlation of the size factors of nanocatalyzer and carbon nanotubes // Phys. Met. Metallogr. 2022. V. 123. № 11. P. 1112–1116.
  19. Kozlovskiy A.L., Shlimasa D.I., Shumskayac A.E., Kaniukov E.Y., Zdorovets M.V., Kadyrzhanov K.K. Influence of electrodeposition parameters on structural and morphological features of Ni nanotubes // Phys. Met. Metallogr. 2017. V. 118. № 2. P. 164–169.
  20. Oshima Y., Onga A., Takayanagi K. Helical gold nanotube synthesized at 150 K // Phys. Rev. Lett. 2003. V. 91. P. 205503.
  21. Serra M., Arenal R., Tenne R. An overview of the recent advances in inorganic nanotubes // Nanoscale. 2019. V. 11. № 17. P. 8073–8090.
  22. Sheinerman A.G. Mechanical properties of metal matrix composites with graphene and carbon nanotubes // Phys. Met. Metallogr. 2022. V. 123. № 1. P. 57–84.
  23. Liu D.X. Microstructures, properties and strengthening mechanisms of titanium matrix composites reinforced by in situ synthesized TiC and unreacted carbon nanotubes // Phys. Met. Metallogr. 2021. V. 122. P. 1551–1560.
  24. Zhou J., Dong J. Vibrational properties of single-walled gold nanotubes from first principles // Phys. Rev. B. 2007. V. 75. P. 155423.
  25. Cai Y., Zhou M., Zeng M., Zhang C., Feng Y.P. Adsorbate and defect effects on electronic and transport properties of gold nanotubes // Nanotechnology. 2011. V. 22. P. 215702.
  26. Liu Q., Xu C., Wu X., Cheng L. Electronic shells of a tubular Au26 cluster: A cage-cage superatomic molecule based on spherical aromaticity // Nanoscale. 2019. V. 11. № 28. P. 13227–13232.
  27. Ono S., Yoshioka H. Breakdown of continuum elasticity due to electronic effects in gold nanotubes / arXiv: 2411.08289. 2024.
  28. Senger R., Dag S., Ciraci S. Сhiral single-wall gold nanotubes // Phys. Rev. Lett. 2004. V. 93. P. 196807.
  29. Goduljan A., Juarez F., Mohammadzadeh L., Quaino P., Santos E., Schmickler W. Screening of ions in carbon and gold nanotubes – A theoretical study // Electrochem. commun. 2014. V. 45. P. 48–51.
  30. Pathania Y., Kapoor P. Variation in gold monolayer properties on interaction with DNA/RNA nucleobases useful for DNA sensing // Mater. Sci. Eng. B. 2023. V. 288. P. 116152.
  31. Yang X., Dong J. Geometrical and electronic structures of the (5, 3) single-walled gold nanotube from first-principles calculations // Phys. Rev. B. 2005. V. 71. P. 233403.
  32. Nhat P.V., Si N.T., Nguyen M.T. Structural evolution and stability trend of small-sized gold clusters Aun (n = 20-30) // J. Phys. Chem. A. 2020. V. 124. P. 1289–1299.
  33. Flores M.A., Menéndez-Proupin E. Spin-orbit coupling effects in gold clusters: The case of Au13 // J. Phys. Conf. Ser. 2016. V. 720. P. 012032.
  34. Yakovkin I.N., Petrova N.V. A DFT study of the proximity effect in the spin-orbit coupling in Au/graphene, Au/silicene, and Bi/silicene bilayers // Phys. Lett. Sect. A Gen. At. Solid State Phys. 2024. V. 506. P. 129475.
  35. Sozykin S.A., Beskachko V.P. Electronic structure of achiral gold nanotubes // Phys. E Low-Dimensional Syst. Nanostructures. 2020. V. 115. P. 113686.
  36. Созыкина Е.Р., Созыкин С.А. Атомная и электронная структуры хиральных золотых нанотрубок // Вестник ЮУрГУ. Сер. “Математика. Механика. Физика”. 2022. Т. 14. № 4. С. 59–64.
  37. Mironov G.I., Sozykina E.R. Electronic properties of gold nanotubes (5, 3) and (5, 0) in the Hubbard model in the static fluctuation approximation // Low Temp. Phys. 2019. V. 45. № 1. P. 113–117.
  38. Kresse G., Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set // Phys. Rev. B. 1996. V. 54. P. 11169.
  39. Sozykin S.A. GUI4dft – A SIESTA oriented GUI // Comput. Phys. Commun. 2021. V. 262. P. 107843.
  40. Ganose A.M., Jackson A.J., Scanlon D.O. sumo: Command-line tools for plotting and analysis of periodic ab initio calculations // J. Open Source Softw. 2018. V. 3. P. 717.
  41. D’yachkov P.N., Lomakin N.A. Simulation of spin selectivity of electrical conductivity of chiral platinum nanotubes // Russ. J. Inorg. Chem. 2023. V. 6. № 4. P. 424–429.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Models of (a) Au25,m clusters, where m = 1–6, (b) OZNT with chirality indices (n, 0), n = 3–10, and (c) Golden.

Download (267KB)
3. Fig. 2. Average interatomic distances lAu–Au and relative energies ΔE of Au25 isomers. The index “soc” refers to the results obtained taking into account the spin-orbit interaction. ΔEref are the relative energies of the corresponding starting configurations of clusters according to [32].

Download (31KB)
4. Fig. 3. Cohesion and formation energies of gold nanotubes as a function of their radius.

Download (22KB)
5. Fig. 4. Energy levels of Au25 clusters with (red lines) and without (blue lines) spin-orbit interaction. Energy is measured from HOMO.

Download (31KB)
6. Fig. 5. Band structure of gold nanotubes (n, 0), where n = 3–10. Red lines – taking into account spin-orbit interaction, blue – without it.

Download (710KB)
7. Fig. 6. Band structure of golden without (blue dotted lines) and with (red lines) taking into account spin-orbit interaction.

Download (65KB)