Simulation of the five-component Potts model on triangular lattice by the Monte Carlo method in pure and diluted modes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Monte Carlo method is used to simulate the five-component Potts model on a triangular lattice in pure and diluted modes. Systems with linear dimensions L × L = N and L = 20÷120 in units of interatomic length are considered at spin concentration p = 1.00 and 0.90. The obtained numerical data show that a phase transition of the first kind is observed in the five-component Potts model on a triangular lattice according to the theory. Introduction of an insignificant nonmagnetic order into the considered model leads to the phase transition of the second kind. The fourth-order method of Binder cumulants and the histogram analysis are used to refine the value of localization of the temperature Tl of phase transition of the first kind in the undiluted mode.

About the authors

G. Y. Ataeva

Amirkhanov Institute of Physics, Dagestan Federal Research Center, Russian Academy of Sciences

Author for correspondence.
Email: ataeva20102014@mail.ru
Russian Federation, Makhachkala, 367030

A. B. Babaev

Amirkhanov Institute of Physics, Dagestan Federal Research Center, Russian Academy of Sciences

Email: ataeva20102014@mail.ru
Russian Federation, Makhachkala, 367030

A. K. Murtazaev

Amirkhanov Institute of Physics, Dagestan Federal Research Center, Russian Academy of Sciences

Email: ataeva20102014@mail.ru
Russian Federation, Makhachkala, 367030

References

  1. Щур Л.Н. Вычислительная физика и проверка теоретических предсказаний // УФН. 2012. 182. Т. 7. С. 787–792.
  2. Wu F.Y. Exactly Solved Models: A Journey in Statistical Mechanics. London: World Scientific, 2009. 660 p.
  3. Ермилов А.Н. Аналитический метод исследования стохастической модели Поттса // Физика элементарных частиц и атомного ядра. 1989. Т. 20. Вып. 6. С. 1479–1544.
  4. Wu F.Y. The Potts model // Rev. Mod. Phys. 1982. V. 54. P. 235–268.
  5. Wolff U. Collective Monte Carlo Updating for spin systems //Phys. Lett. 1989. V. 62. P. 361–364.
  6. Peczac P., Ferrenberg A.M., Landau D.P. High-accuracy Monte Carlo study of the three-dimensional classical Heisenberg ferromagnet // Phys. Rev. B. 1991. V. 43. P. 6087–6093.
  7. Муртазаев А.К., Бабаев А.Б. Вычислительная физика и проблемы фазовых переходов. М.: Физматлит, 2023.
  8. Eichhorn K., Binder K. Monte Carlo investigation of the three-dimensional random-field three-state Potts model // J. Phys.: Cond. Matter. 1996. V. 8. P. 5209–5227.
  9. Murtazaev A.K., Babaev A.B. The critical behavior of the two-dimensional three-state Potts model on a triangular lattice with quenched disorder // Materials Letters. 2019. V. 238. P. 321–323.
  10. Муртазаев А.К., Бабаев А.Б., Атаева Г.Я. Влияние вмороженных немагнитных примесей на фазовые переходы в двумерной трехвершинной антиферромагнитной модели Поттса на треугольной решетке // ФТТ. 2015. Т. 57. № 7. С. 1410–1412.
  11. Бабаев А.Б., Ризванова Т.Р., Муртазаев А.К. Термодинамические и магнитные свойства трехвершинной модели Поттса на треугольной решетке с учетом взаимодействия вторых ближайших соседей // ФТТ. 2017. Т. 59. № 12. С. 2416–2419.
  12. Loison D. and Schotte K.D. First and second order transition in frustrated XY systems // Euro. Phys. J. B. 1998. 5. P. 735–743.
  13. Alves N.A., Berg B.A. and Villanova R. Ising-model Monte Carlo simulations: Density of states and mass gay // Phys. Rev. B. 1990. V. 41. P. 383–394.
  14. Бекстер Р. Точно решаемые модели в статистической механике. М.: Мир, 1985. 486 с.

Supplementary files

Supplementary Files
Action
1. JATS XML