Remagnetization processes of uniaxial ferromagnetic films with spatially modified parameters

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study examines the behavior of vortex-like magnetic inhomogeneities that arise in a ferromagnetic disk with spatially modulated uniaxial anisotropy under magnetic fields of varying orientations. The research identifies the characteristic remagnetization stages of the vortex-like inhomogeneities formed in the region of the defect. critical fields of their rearrangement are found and an explanation is given for the difference in the behavior of these inhomogeneities in perpendicular and planar magnetic fields. The effect of the helicity of the magnetic skyrmion localized on the defect on its remagnetization process in the planar field is revealed.

Full Text

Restricted Access

About the authors

R. M. Vakhitov

FSFEI HE Ufa University of Science and Technology

Author for correspondence.
Email: vakhitovrm@yahoo.com

The Institute of Physics and Technology

Russian Federation, 450076, Ufa

A. A. Akhmetova

FSFEI HE Ufa University of Science and Technology

Email: vakhitovrm@yahoo.com

The Institute of Physics and Technology

Russian Federation, 450076, Ufa

M. А. Filippov

FSFEI HE Ufa University of Science and Technology

Email: vakhitovrm@yahoo.com

The Institute of Physics and Technology

Russian Federation, 450076, Ufa

R. V. Solonetsky

FSFEI HE Ufa University of Science and Technology

Email: vakhitovrm@yahoo.com

The Institute of Physics and Technology

Russian Federation, 450076, Ufa

References

  1. Sapozhnikov M.V., Vdovichev S.N., Ermolaeva O.L., Gusev N.S., Fraerman A.A., Gusev S.A., Petrov Yu.V. Artificial dense lattice of magnetic bubbles // Appl. Phys. Lett. 2016. V. 109. 042406. P. 1–5.
  2. Navas D., Verba R.V., Hierro-Rodriguez A., Bungaev S.A., Zhou X., Adeyeye A.O., Dobrovolskiy O.V., Ivanov B.A., Guslienko K.Y., Kakazei G.N. Route to form skyrmions in soft magnetic films // APL Mater. 2019. V. 7. 081114. P. 1–8.
  3. Вахитов Р.М., Ахметова А.А., Солонецкий Р.В. Особенности перемагничивания магнитоодноосных пленок с колумнарными дефектами // ФММ. 2020. Т. 121. № 5. С. 416–422.
  4. Mühlbauer S., Binz B., Jonietz F., Pfleiderer C., Rosch A., Newbauer A., Georgii R., Boni P. Skyrmion lattice in a chiral magnet // Science. 2009. V. 323. 5916. P. 915–919.
  5. Luo S., You L. Skyrmion devices for memory and logic application // APL Mater. 2021. V. 9. 050901.
  6. Самардак А.С., Колесников А.Г., Давыденко А.В., Стеблина М.Е., Огнева А.В. Топологически нетривиальные спиновые текстуры в тонких магнитных пленках // ФММ. 2022. Т. 123. № 3. С. 260–283.
  7. Kumar D., Sbiaa R. Domain wall memory: physics, materials, and devices // Phes. Rep. 2022. V. 958. P. 1–35.
  8. Lee O., Msiska O.R., Brems M.A., Klaui M., Kurebayashi H. Perspective on unconventional computing using magnetic skyrmions // Appl. Phys. Lett. 2023. V. 122. 260501.
  9. Fert A., Reyren N., Cros V. Magnetic skyrmions: advances in physics and potential applications // Nat. Rev. Mater. 2017. V. 2. 17031.
  10. Moreau-Luchaire, C., Moutafis, C., Reyren, N. Sampaio J., Vaz C.A. F., Horne N. Van, Bouzehouane K., Garcia K., Deranlot C., Warnicke P., Wohlhuter P., George J.M., Weigand M., Raabe J., Cros V., Fert A. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature // Nat. Nanotechnol. 2016. V. 11. P. 444–448.
  11. Ho P., Tan A.K.C., Goolaup S., Oyarce A.L.G., Raju M., Huang L.S., Soumyanarayanan A., Panagopoulos C. Geometrically Tailored Skyrmions at Zero Magnetic Field in Multilayered Nanostructures // Phys. Rev. Appl. 2019. V. 11. 024064.
  12. Sun L., Cao R.X., Miao B.F., Feng Z., You B., Wu D., Zhang W., An Hu, Ding H.F. Creating an Artificial Two-Dimensional Skyrmion Crystal by Nanopatterning. // Phys. Rev. Lett. 2013. V. 110. 167201. P. 1–5.
  13. Sapozhnikov M.V. Skyrmion lattice in a magnetic film with spatially modulated material parameters // J. Magn. Magn. Mater. 2015. V. 396. P. 338–344.
  14. Vakhitov R.M., Solonetsky R.V., Akhmetova A.A. Stable states of vortex-like magnetic formations in inhomogeneous magnetically uniaxial films and their behavior in a longitudinal magnetic field // J. Appl.Phys. 2020. V. 128. 153904. P. 1–10.
  15. Вахитов Р.М., Юмагузин А.Р. Структура и свойства магнитных неоднородностей, зарождающихся в области неоднородных магнитных полей // ЖТФ. 2001. Т. 46. № 5. С. 553–558.
  16. Миронов В.Л., Горев Р.В., Ермолаева О.Л., Гусев Н.С., Петров Ю.В. Воздействие поля зонда магнитно-силового микроскопана скирмионное состояние в модифицированной пленке Co/Pt с перпендикулярной анизотропией // ФТТ. 2019. Т. 61. № 9. С. 1644–1648.
  17. Darby M.I. Concerning the theory of bubble domains with Neel walls // Int. J. Magn. 1973. V. 4. P. 199–204.
  18. Вахитов Р.М., Шапаева Т.Б., Солонецкий Р.В., Юмагузин А.Р. Особенности структуры микромагнитных образований на дефектах плёнок ферритов–гранатов // ФММ. 2017. Т. 118. № 6. С. 571–575.
  19. Donahue M.J. and Porter D.G. OOMMF User’s Guide: Version 1.0. NISTIR6376. National Institute of Standards and Technology, Gaithersburg, Md. 1999.
  20. Khodenkov H.E., Kudelkin N.N., Randoshkin V.V. The Breakdown of the 360° Bloch Domain Wall in Bubble Magnetic Films // Phys. Stat. Sol (a). 1984. V. 84. К135–К138.
  21. Sapozhnikov M.V., Petrov Yu.V., Gusev N.S., Temiryazev A.G., Ermolaeva O.L., Mironov V.L., Udalov O.G. Artificial Dense Lattices of Magnetic Skyrmions // Materials. 2020. V. 13. № 99. P. 1–9.
  22. Beg M., Lang M., Fangohr H. Ubermag: Toward More Effective Micromagnetic Workflows // IEEE Transactions on Magnetics. 2022. V. 58. № 2. 1–5.
  23. Xia H., Song C., Wang J., Jin C., Ma Y., Zhang C., Wang J., Liu Q. Magnetic properties of isolated skyrmion under the in-plane magnetic field and anisotropy gradient // J. Appl. Phys. 2019. V. 126. 063904. P. 1–7.
  24. Guslienko K. Yu., Metlov K.L. Evolution and stability of a magnetic vortex in a small cylindrical ferromagnetic particle under applied field // Phys. Rev. B. 2001. V. 63. 100403(R).
  25. Wang W., Beg M., Zhang B., Kuch W., Fangohr H. Driving magnetic skyrmions with microwave fields // Phys. Rev. B. 2015. V. 92. 020403. P. 1–5.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Geometry of the problem. Here (er, ea, ez) are the unit vectors along the corresponding axes in the cylindrical coordinate system (r, α, z).

Download (61KB)
3. Fig. 2. Images illustrating the process of remagnetization of a uniaxial ferromagnetic disk with a defect in a perpendicular field. Sample parameters: R = 300 nm, D = 30 nm, R0 = 30 nm, A1 = A2 = 2.5 × 10-13 J/m, Ku1 = 3 × 104 J/m3, Ku2 = -0.5 × 104 J/m3, Ms = 6.6 × 105 A/m (visualization was performed in an environment Ubermag [22]).

Download (1MB)
4. Fig. 3. Graph of the dependence of the radius of the skyrmion RV on the radius of the defect R0.

Download (111KB)
5. Fig. 4. Images illustrating the process of remagnetization of a uniaxial ferromagnetic disk with a defect in a planar field. Sample parameters: R = 300 nm, D = 30 nm, R0 = 30 nm, A1 = A2 = 2.5 × 10-13 J/m, Ku1 = 3 × 104 J/m3, Ku2 = -0.5 × 104 J/m3, Ms = 6.6 × 105 A/m (visualization was performed in an environment Ubermag [22]).

Download (513KB)