Peculiarities of the Spin Wave Spectrum in Transversely Confined YIG Microwaveguides with Inhomogeneous Magnetization Profile

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A study of spin wave spectra in a two-layer structure of iron-yttrium garnet (YIG) with different magnitudes of the saturation magnetizations of the layers has been carried out. Different modes of spin wave propagation (reciprocal, nonreciprocal, single-wave) depending on the type of structure and width of the central waveguide are investigated. The classification of spin wave spectra is carried out, and the class of guided, outgoing, and edge spin modes is identified. In particular, it is shown that in a system of planar magnetic comb-type LS-type (Ms1 < Ms2) microwave guide tubes with periodic boundary conditions, two non-contiguous frequency regions of existence of guided modes of the central waveguide are observed for a width w of the central waveguide. Two adjacent frequency regions exist in the system of planar magnetic comb-type HS-type (Ms1 > Ms2) microwave guide tubes at any values of the width of the central waveguide: in the high-frequency region, the mode with outflowing modes of the structure is realized, while in the low-frequency region, the mode with guided modes of the central waveguide is realized. It is shown that in systems of both types in the region of strongly inhomogeneous magnetic fields there can exist modes of boundary waves having a mutual character of propagation. The results obtained can be used to expand and clarify the physics of wave processes in complicated magnetic structures.

Full Text

Restricted Access

About the authors

Yu. V. Aleksandrova

Saratov State University

Author for correspondence.
Email: jvaleksandrova@gmail.ru
Russian Federation, Saratov

E. N. Beginin

Saratov State University

Email: jvaleksandrova@gmail.com
Russian Federation, Saratov

S. E. Sheshukova

Saratov State University

Email: jvaleksandrova@gmail.ru
Russian Federation, Saratov

A. V. Sadovnikov

Saratov State University

Email: jvaleksandrova@gmail.com
Russian Federation, Saratov

References

  1. Kruglyak V.V., Demokritov S.O., Grundler D. Broadband injection and scattering of spin waves in lossy width-modulated magnonic crystal waveguides // Magnonics. J. Phys. D: Appl. Phys. 2010. V. 43. No.26. P. 264001(14). https://doi.org/10.1088/0022-3727/46/13/135003
  2. Гуревич А.Г. Магнитный резонанс в ферритах и антиферромагнетиках. М.: Наука, 1973. 591 с.
  3. Ахиезер А.И., Барьяхтар В.Г., Пелетминский С.В. Спиновые волны. М.: Наука, 1967. 368 с.
  4. Гуревич А.Г., Мелков Г.А. Магнитные колебания и волны. М.: Физматлит, 1994. 464 с.
  5. Ландау Л.Д., Лифшиц Е.М. К теории дисперсии магнитной проницаемости ферромагнитных тел / Ландау Л.Д. Собрание трудов в 2 т. Под ред. Е. М. Лифшица. М.: Наука, 1969. Т. 1. 512 с.
  6. Cherepanov V., Kolokolov I., and L’vov V. The saga of YIG: Spectra, thermodynamics, interaction and relaxation of magnons in a complex magnet // Phys. Rep. 1993. V. 229. Р. 81. https://doi.org/10.1016/0370-1573(93)90107-O
  7. Glass H.L. Ferrite films for microwave and millimeter-wave devices // Proc. IEEE. 1988. V. 76. Р. 151. https://doi.org/10.1109/5.4391
  8. Geller S., Gilleo M.A. Structure and ferrimagnetism of yttrium and rare-earth-iron garnets // Acta Crystallogr. 1957. V. 10. Р. 239. https://doi.org/10.1107/S0365110X57000729
  9. Klingler S., Chumak A., Mewes T., Khodadadi B., Mewes C., Dubs C., Surzhenko O., Hillebrands B., and Conca A. Measurements of the exchange stiffness of YIG films by microwave resonance techniques // J. Phys. D. Appl. Phys. 2015. V. 48. Р. 015001. https://doi.org/10.1088/0022-3727/48/1/015001
  10. Serrao C.R., Sahu J.R., Ramesha K., and Rao C. N.R. Magnetoelectric effect in rare earth ferrites // J. Appl. Phys. 2008. V. 104. Р. 016102. https://doi.org/10.1063/1.2946455
  11. Sadovnikov A.V., Odintsov S.A., Beginin E.N., Grachev A.A., Gubanov V.A., Sheshukova S.E., Sharaevskii Yu.P, Nikitov S.A. Nonlinear Spin Wave Effects in the System of Lateral Magnonic Structures // JETP Letters. 2018. V. 107(1). P. 25–29. https://doi.org/10.1134/S0021364018010113
  12. Sadovnikov A.V., Bublikov K.V., Beginin E.N., Sheshukova S.E., Sharaevskii Yu.P., Nikitov S.A. Nonreciprocal propagation of hybrid electromagnetic waves in a layered ferrite–ferroelectric structure with a finite width // JETP Lett. 2015. V. 102. Р. 142–147. https://doi.org/10.1134/ S0021364015150102
  13. Kalyabin D.V., Sadovnikov A.V., Beginin E.N., Nikitov S.A. Surface spin waves propagation in tapered magnetic stripe // J. Appl. Phys. 2019. V. 126. P. 173907.
  14. Odintsov S.A., Beginin E.N., Sheshukova S.E., Sadovnikov A.V. Reconfigurable Lateral Spin-Wave Transport in a Ring Magnonic Microwaveguide // JETP Lett. 2019. V. 110. Р. 430–435. https://doi.org/10.1134/S0021364019180061
  15. Davies C.S., Sadovnikov A.V., Grishin S.V., Sharaevskii Yu.P., Nikitov S.A., Kruglyak V.V. Generation of propagating spin waves from regions of increased dynamic demagnetising field near magnetic antidots // Appl. Phys. Lett. 2015. V. 107. Р. 162401. https://doi.org/10.1063/1.4933263
  16. Vysotskii S.L., Sadovnikov A.V., Dudko G.M., Kozhevnikov A.V., Khivintsev Y.V., Sakharov V.K., Novitskii N.N., Stognij A.I., Filimonov Y.A. Spin-waves generation at the thickness step of yttrium iron garnet film // Appl. Phys. Lett. 2020. V. 117. Р. 102403. https://doi.org/10.1063/5.0018388
  17. Chumak A.V., Kabos P., Wu M., Abert C., Adelmann C., Adeyeye A.O., Akerman J., Aliev A. et al. Advances in Magnetics Roadmap on Spin-Wave Computing. Advances in Magnetics Roadmap on Spin-Wave Computing // IEEE Trans. Magn. 2022. V. 58 (6). Article 0800172. https://doi.org/10.1109/TMAG.2022.3149664
  18. Khitun A. Multi-frequency magnonic logic circuits for parallel data processing // J. Appl. Phys. 2012. V. 111 (5). Р. 054307. https://doi.org/10.1063/1.3689011
  19. Одинцов С.А., Локк Э.Г., Бегинин Е.Н., Садовников А.В. Эффекты нелинейности при распространении спиновых волн в двуслойном магнонном волноводе // ФТТ. 2022. Т. 9. С. 1263–1266. https://doi.org/10.21883/FTT.2022.09.52813.06HH
  20. Odintsov S.A., Sheshukova S.E., Nikitov S.A., Lock E.H., Beginin E.N., and Sadovnikov A.V., Nonreciprocal spin wave propagation in bilayer magnonic waveguide // J. Magn. Magn. Mater. 2021. V. 546. P. 168736. https://doi.org/10.32362/2500-316X-2022-10-4-55-64
  21. Vansteenkiste A., Leliaert J., Dvornik M., Helsen M., Garcia-Sanchez F., Waeyenberge B.V. The design and verification of MuMax3 // AIP Advances. 2014. V. 4. (10). Р. 107133.
  22. Demokritov S., Slavin A. Magnonics: From Fundamentals to Applications // Topics in Applied Physics 2012. V. 125. Springer Berlin Heidelberg.
  23. Demidov V.E., Urazhdin S., Zholud A., Sadovnikov A.V., Demokritov S.O. Dipolar field-induced spin-wave waveguides for spin-torque magnonics // Appl. Phys. Lett. 2015. V. 106. Р. 022403.
  24. Gubbiotti G., Sadovnikov A., Beginin E., Sheshukova S., Nikitov S., Talmelli G., Asselberghs I., Radu I.P., Adelmann C., and Ciubotaru F. Magnonic band structure in CoFeB/Ta/NiFe meander-shaped magnetic bilayers // Phys. Rev. Appl. 2021. V. 15. Р. 014061.
  25. Филимонов Ю.А., Шеин И.В. Внутренние магнитостатические волны в структуре с двумя анизотропными ферритовыми слоями // ЖТФ. 1992. Т. 62 (1). P. 187–196.
  26. O’Keeffe T.W., Patterson R.W. Magnetostatic surface-wave propagation in finite samples // J. Appl. Phys. 1978. V. 49. P. 4886–4895.
  27. Bajpai S.N. Excitation of magnetostatic surface waves: Effect of finite sample width // J. Appl. Phys. 1985. V. 58. Р. 910–913. https://doi.org/10.1063/1.336164
  28. Grassi M., Geilen M., Louis D., Mohseni M., Brächer T., Hehn M., Stoeffler D., Bailleul M., Pirro P., Henry Y. Slow-Wave-based nanomagnonic diode // Phys. Rev. Appl. American Physical Society. 2020. V. 14. № 2. P. 1. https://doi.org/10.1103/PhysRevApplied.14.024047
  29. Kalinikos B.A., and Slavin A.N. Ferromagnetic Films With Mixed Exchange Boundary // J. Phys. C. Solid State Phys. 1986. V. 19. P. 7013–7033.
  30. Damon R.W., Eshbach J.R. Magnetostatic modes of a ferromagnet slab // J. Phys. Chem. Solids. 1961. V. 19 (3-4). Р. 308–320. https://doi.org/10.1016/0022-3697(61)90041-5
  31. Stancil D., Prabhakar A. Spin Waves: Theory and Applications. New York: Springer, 2009. 346 p.
  32. Lan J., Yu W., Wu R., Xiao J. Spin-Wave Diode // Phys. Rev. X. 2015. V. 5. № 4. P. 041049. https://doi.org/10.1103/PhysRevX.5.041049
  33. Самардак А.С., Колесников А.Г., Давыденко А.В., Стеблий М.Е., Огнев А.В. Топологически нетривиальные спиновые текстуры в тонких магнитных пленках // Физика металлов и металловедение. 2022. Т. 123. № 3. С. 260–283. https://doi.org/10.31857/S0015323022030093

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of the investigated structure consisting of two LIG films (a); cross section of the structure in the (y, z) plane (b); top view of the structure in the (x, y) plane (c). The excitation region of the numerical experiment is highlighted in yellow. The output antenna regions are highlighted in red. The orientation of the external magnetic field H0 is shown by the arrow in the figure. The notations used are given in the text

Download (236KB)
3. Fig. 2. Distribution (z) in the cross section y = Ly/2 as a function of the waveguide width w: a) LS-structure, b) HS-structure

Download (219KB)
4. Fig. 4. Dispersion characteristic of CB in two-layer boundaryless reference LS-structure: dashed lines show frequencies fp1, fp2 of the beginning of dispersion characteristic branches, symbols (a, b, c, d) mark separate dispersion branches, figures (I, II, III) mark characteristic frequency regions

Download (112KB)
5. Fig. 5. Dispersion characteristics of spin waves and frequency regions of different propagation modes as a function of the waveguide width w in different sections of a periodic LS-type structure. a, c - section D-D, b, d - section C-C; a, b - w = 200 μm, c, d - w = 50 μm

Download (586KB)
6. Fig. 6. Dispersion characteristics of spin waves and frequency regions of different propagation modes as a function of the waveguide width w in different sections of a periodic HS-type structure. a, c - section D-D, b, d - section C-C; a, b - w = 200 µm, c, d - w = 50 µm

Download (586KB)