On the angular anisotropy of the distribution function of radiating particles in relativistic jets

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The observed power-law spectra of relativistic jets from active galactic nuclei clearly indicate the synchrotron mechanism of radiation by particles that also have a power-law energy spectrum. However, the issue of their angular anisotropy has not received sufficient attention until recently, although the example of the solar wind (where a strongly magnetized wind is also realized) shows the importance of taking this circumstance into account. In this paper, the evolution of the initially isotropic power-law spectrum of radiating particles as they propagate along expanding relativistic jets is investigated. It is shown that for relativistic flows in which the electric field plays a decisive role, the conservation of the first adiabatic invariant does not lead to a decrease in the pitch angles of the radiating particles as they enter the region of weak magnetic fields. This is due to the drift nature of the particle motion.

About the authors

T. I. Khalilov

Moscow Institute of Physics and Technology (National Research University); Theoretical Department of P. N. Lebedev Physical Institute of the Russian Academy of Sciences

Email: beskin@lpi.ru
Dolgoprudny, Moscow region, Russia; Moscow, Russia

V. S. Beskin

Theoretical Department of P. N. Lebedev Physical Institute of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: beskin@lpi.ru
Moscow, Russia; Dolgoprudny, Moscow region, Russia

V. I. Pariev

Theoretical Department of P. N. Lebedev Physical Institute of the Russian Academy of Sciences

Author for correspondence.
Email: beskin@lpi.ru
Moscow, Russia

References

  1. S. Komissarov and O. Porth, New Astron. Rev. 92, id. 101610 (2021).
  2. S.W. Davis and A. Tchekhovskoy, Ann. Rev. Astron. Astrophys. 58, 407 (2020).
  3. V.I. Pariev, Ya. N. Istomin, and А.R. Beresnyak, Astron. and Astrophys. 403, 805 (2003).
  4. M. Lyutikov, V.I. Pariev, and R.D. Blandford, 597(2), 998 (2003).
  5. M. Lyutikov, V.I. Pariev, and D.C. Gabuzda, Monthly Not. Roy. Astron. Soc. 360(3), 869 (2005).
  6. K.V. Sokolovsky, Y.Y. Kovalev, A.V. Pushkarev, and A.P. Lobanov, Astron. and Astrophys. 532, id. A38 (2011).
  7. P.M. Giovanoni and D. Kazanas, Nature 345(6273), 319 (1990).
  8. A.R. Beresnyak, Ya. N. Istomin, and V.I. Pariev, Astron. and Astrophys. 403, 793 (2003).
  9. H. Zhang, L. Sironi, D. Giannios, and M. Petropoulou, Astrophys. J. 956, L36 (2023).
  10. А.Г. Пахольчик, Радиоастрофизика (М.: Мир, 1973).
  11. М.С. Бутузова, Астрон. журн. 98(8), 619 (2021).
  12. G.M. Felice and R.M. Kulsrud, 553(1), 198 (2001).
  13. E. Sobacchi and Y.E. Lyubarsky, Monthly Not. Roy. Astron. Soc. 484(1), 1192 (2019).
  14. N.M. Lloyd and V. Petrosian, 543(2), 722 (2000).
  15. J.C. McKinney, A. Tchekhovskoy, and R.D. Blandford, Monthly Not. Roy. Astron. Soc. 423(4), 3083 (2012).
  16. K. Chatterjee, M. Liska, A. Tchekhovskoy, and S.B. Markoff, Monthly Not. Roy. Astron. Soc. 490(2), 2200 (2019).
  17. E. Marsch, Liv. Rev. Solar Physics 3(1), id. 1 (2006).
  18. B. D.G. Chandran, T.J. Dennis, E. Quataert, and S.D. Bale, 743(2), id. 197 (2011).
  19. M.L. Adrian, A.F. Viñas, P.S. Moya, and D.E. Wendel, 833(1), id. 49 (2016).
  20. E. Clausen-Brown, M. Lyutikov, and P. Kharb, Monthly Not. Roy. Astron. Soc. 415(3), 2081 (2011).
  21. E.E. Nokhrina, V.S. Beskin, Y.Y. Kovalev, and A.A. Zheltoukhov, Monthly Not. Roy. Astron. Soc. 447(3), 2726 (2015).
  22. V.A. Frolova, E.E. Nokhrina, and I.N. Pashchenko, Monthly Not. Roy. Astron. Soc. 523(1), 887 (2023).
  23. В.С. Бескин, Успехи физ. наук 180(12), 1241 (2010).
  24. M. Zamaninasab, E. Clausen-Brown, T. Savolainen, and A. Tchekhovskoy, Nature 510(7503), 126 (2014).
  25. E.E. Nokhrina, Y.Y. Kovalev, and A.B. Pushkarev, Monthly Not. Roy. Astron. Soc. 498(2), 2532 (2020).
  26. F. Mertens, A.P. Lobanov, R.C. Walker, and P.E. Hardee, Astron. and Astrophys. 595, id. A54 (2016).
  27. R.D. Blandford and R.L. Znajek, Monthly Not. Roy. Astron. Soc. 179, 433 (1977).
  28. D. Macdonald and K.S. Thorne, Monthly Not. Roy. Astron. Soc. 198, 345 (1982).
  29. S. P. O’Sullivan and D.C. Gabuzda, Monthly Not. Roy. Astron. Soc. 400(1), 26 (2009).
  30. F.C. Michel, 158, 727 (1969).
  31. A.P. Lobanov, Astron. and Astrophys. 330, 79 (1998).
  32. В.С. Бескин, Т.И. Халилов, В.И. Парьев, Письма в Астрон. журн. 49(3), 197 (2023).
  33. В.С. Бескин Осесимметричные стационарные течения в астрофизике (М.: Физматлит, 2006).
  34. A. Tchekhovskoy, J.C. McKinney, and R. Narayan, Monthly Not. Roy. Astron. Soc. 388(2), 551 (2008).
  35. M. Takahashi, S. Nitta, Ya. Tatematsu, and A. Tomimatsu, 363, 206 (1990).
  36. T. Ogihara, K. Takahashi, and K. Toma, 877(1), id. 19 (2019).
  37. В.С. Бескин, Я.Н. Истомин, В.И. Парьев, Астрон. журн. 69(6), 1258 (1992).
  38. B. Crinquand, B. Cerutti, A. Philippov, K. Parfrey, and G. Dubus, Phys. Rev. Letters 124(14), id. 145101 (2020).
  39. S.V. Bogovalov, Monthly Not. Roy. Astron. Soc. 443(3), 2197 (2014).
  40. E.C. Roelof, in Lectures in High-Energy Astrophysics, NASA SP-199, edited by H. Ogelman and J.R. Wayland (Scientific and Technical Inform. Division, Office of Technology Utilization, NASA, Washington, DC, 1969), p. 111.
  41. T. Hovatta, M.F. Aller, H.D. Aller, E. Clausen-Brown, et al., Astron. J. 147(6), id. 143 (2014).
  42. V.S. Beskin, T.I. Khalilov, E.E. Nokhrina, I.N. Pashchenko and E.V. Kravchenko, Monthly Not. Roy. Astron. Soc. 528(4), 6046 (2024).
  43. F.C. Michel, 180, L133 (1973).
  44. A.V. Chernoglazov, V.S. Beskin, and V.I. Pariev, Monthly Not. Roy. Astron. Soc. 488(1), 224 (2019).
  45. J. Heyvaerts and C. Norman, 347, 1055 (1989).
  46. G. Pelletier and R.E. Pudritz, 394, 117 (1992).
  47. В.В. Кочаровский, В.В. Кочаровский, В.Ю. Мартьянов, С.В. Тарасов, Успехи физ. наук 186(12), 1267 (2016).
  48. V.V. Kocharovsky, A.A. Nechaev, and M.A. Garasev, Rev. Modern Plasma Physics 8(1), id. 17 (2024).
  49. H.-Q. He and R. Schlickeiser, 792(2), id. 85 (2014).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences