Formalization of criteria for multi-parametric selection of turbofan engine pairs for powerplants of twin-engine aircraft and their automatic control structure to reduce thrust asymmetry
- Autores: Burova A.Y.1, Kochetkov N.Y.1, Nesterov V.A.1, Sypalo K.I.2
-
Afiliações:
- Moscow Aviation Institute (National Research University)
- Central Aerohydrodynamic Institute
- Edição: Nº 3 (2025)
- Páginas: 84-90
- Seção: SYSTEM ANALYSIS AND OPERATIONS RESEARCH
- URL: https://rjsvd.com/0002-3388/article/view/688343
- DOI: https://doi.org/10.31857/S0002338825030086
- EDN: https://elibrary.ru/BGLNYU
- ID: 688343
Citar
Texto integral



Resumo
The issues related to the study of the possibilities of automatic thrust control of turbojet twin-circuit engines by the power plant of a twin-engine aircraft in flight are considered. The purpose of the study is to formalize criteria for the multiparametric selection of turbofan pairs for power plants of twin–engine aircraft and to develop the structure of the automatic control system for such installations to reduce the asymmetry of thrust of their engines in flight. During the research, methods of software modeling of algorithms for automatic control of multi-thrust turbojet engines of twin-engine power plants were used. As a result of the study, criteria for the multiparametric selection of pairs of such engines for twin-engine power plants have been formalized for three thrust parameters of turbojet twin-circuit engines of the same series at once and the structure of the automatic control system of the power plant of a twin-engine aircraft to eliminate the asymmetry of thrust of its engines in flight was developed.
Texto integral

Sobre autores
A. Burova
Moscow Aviation Institute (National Research University)
Autor responsável pela correspondência
Email: frambe@mail.ru
Rússia, Moscow
N. Kochetkov
Moscow Aviation Institute (National Research University)
Email: kolabuy@gmail.com
Rússia, Moscow
V. Nesterov
Moscow Aviation Institute (National Research University)
Email: frambe@mail.ru
Rússia, Moscow
K. Sypalo
Central Aerohydrodynamic Institute
Email: frambe@mail.ru
Rússia, Zhukovsky
Bibliografia
- Бурова А.Ю., Кочетков Н.Ю., Нестеров В.А., Сыпало К.И. Управление частотами вращения роторов турбореактивных двухконтурных двигателей двухдвигательного самолета с целью обеспечения балансировки их тяги в полете // Изв. РАН. ТиСУ. 2024. № 5. С. 149–159.
- Gunston B. World Encyclopedia of Aero Engines: From the Pioneers to the Present Day. Stroud, Gloucestershire: Sutton Publishing Limited, 2006. 260 р.
- Giampaolo T. Gas Turbine Handbook: Principes and Practice. 4th Edition. Lilburn: CRC Press, 2009. 450 p.
- Дворниченко В.В. “Разнотяговость” (асимметрия тяги) ТРДД на дальнемагистральных и среднемагистральных самолетах ГА и способы ее минимизации “на крыле” // Современные проблемы науки и образования. 2008. № 5. С. 45–46.
- Дворниченко В.В., Бурова А.Ю. Глубокое тестирование турбореактивных двигателей методами математической статистики для повышения их соответствия нормативам ICAO // Вестн. МАИ. 2011. Т. 18. № 3. С. 116–127.
- Иноземцев А.А., Сандрацкий В.Л. Газотурбинные двигатели. М.: ОАО “Авиадвигатель”, 2006. 1204 с.
- Иноземцев А.А., Семенов А.Н., Савенков Ю.С., Саженков А.Н., Трубников Ю.А. Способ управления силовой установкой самолета: Патент на изобретение № 2306446 F02C. М.: ОАО “Авиадвигатель”, 2005.
- Kuzenov V.V., Ryzhkov S.V. Development of Method to Modeling Physical Processes in Combined Schemes of the Magneto-Inertial Confinement of High Temperature Plasma // Bulletin of the Russian Academy of Sciences. Physics. 2016. V. 80. № 5. P. 598–602.
- Kuzenov V.V., Ryzhkov S.V. Mathematical Modeling of Plasma Dynamics for Processes in Capillary Discharges // Russian Journal of Nonlinear Dynamics. 2019. V. 15. P. 543–550.
- Kuzenov V.V., Ryzhkov S.V., Starostin A.V., Development of a Mathematical Model and the Numerical Solution Method in a Combined Impact Scheme for MIF Target // Russian J. of Nonlinear Dynamics. 2020. V. 16. № 2. P. 325–341.
- Formalev V.F., Kolesnik S.A., Garibyan B.A. Analytical Solution of the Problem of Conjugate Heat Transfer Between a Gasdynamic Boundary Layer and Anisotropic Strip // Herald of the Bauman Moscow State Technical University. Series Natural Sciences. 2020. V. 5. № 92. P. 44–59.
- Formalev V.F., Degtyarenko R.A., Garibyan B.A. Simulation of Complex Heat Transfer During Cyclic Deposition of a High-Temperature Aerosol on a Substrate // J. Engineering Physics Thermophysics. 2023. V. 96. № 1. P. 1–8.
- Kuzenov V.V., Ryzhkov S.V., Varaksin A.Yu. Computational and Experimental Modeling in Magnetoplasma Aerodynamics and High-speed Gas and Plasma Flows (A Review) // Aerospace. 2023. V. 10. P. 662.
- Новичков В.М., Бурова А.Ю. Применение ТРДД на ЛА с минимизацией разнотяговости для повышения безопасности полетов // Фундаментальные исследования. 2015. № 11 (Ч. 7). С. 1343–1351.
- Прокудин Ю.В., Рябченко Л.П., Донцов В.А. Способ контроля разнотяговости двигателей многодвигательной силовой установки самолета: описание изобретения к патенту SU1838182A3. М.: ВНИИПИ, 1989. 4 с.
- Gurevich O., Smetanin S., Trifonov M. Automatic Сontrol to Reduce the Effect of Deterioration of Gas Turbine Engine Components on its Performance Characteristics // AIAA Propulsion and Energy. Forum, Virtual Conf. 2021. https://www.sciencegate.app/document/10.2514/6.2021-3734 (дата обращения: 16.01.2024 г.).
Arquivos suplementares
