Анализ результатов исследования влияния расчетных параметров на осадки вертикально-нагруженных групп свай с помощью аналитической модели МКВВ

А.П. Трапезникова

Самарский государственный технический университет, Самара, Россия

Обоснование. Проводимое исследование направлено на изучение влияния и определение значимости параметров грунта основания, его расчетной схемы и характеристик фундамента на осадки свай в составе куста при помощи метода коэффициентов взаимного влияния (МКВВ), основанном на методе суперпозиции теории упругости [1]. В ходе проведения исследования создана уникальная аналитическая модель для расчета и оценки поведения одиночной сваи в составе куста свайного фундамента, сформирован перечень характеристик, устанавливающий степень влияния рассчитываемого параметра на осадку сваи.

Цель — анализ полученных результатов исследования для оценки влияния расчетных параметров фундамента на осадки свай в составе свайного куста по МКВВ [2].

Методы. Для анализа результатов исследования в виде суммарных осадок свай в составе куста применялся графический метод представления численных значений суммарной осадки сваи в зависимости от количественного и качественного показателя параметров варьирования (рис. 1).

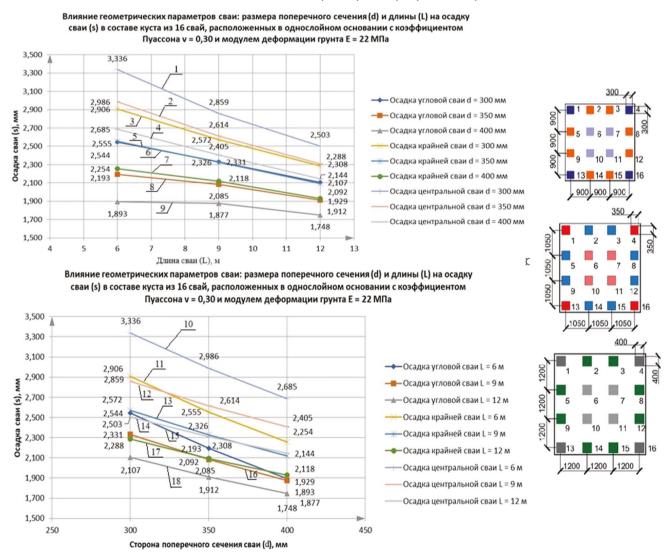


Рис. 1. Графическое представление результатов эксперимента

В численном эксперименте в качестве параметров варьирования принимались различные геометрические параметры сваи (с размерами стороны (d) поперечного сечения 300, 350, 400 мм и длиной (L) 6, 9, 12 м). Грунтовые условия были приняты в виде песчаного среднедеформируемого однослойного основания с коэффициентом Пуассона (v = 0.3) и модулем деформации грунта E = 22 МПа.

Результаты. Графики демонстрируют уменьшение осадки с увеличением размера поперечного сечения и длины сваи. При этом более короткие сваи с меньшей площадью поперечного сечения имеют большую осадку по сравнению с длинными сваями и с большими размерами поперечного сечения. Это объясняется увеличением площади опирания нижнего конца и площади боковой поверхности сваи, что подтверждает адекватность модели и отсутствие противоречий законам механики грунтов.

Результаты численного моделирования осадок сваи при увеличении длины сваи (графики 1—9) и размера поперечного сечения сваи (графики 10—18) представлены в табл. 1.

Таблица 1. Значения абсолютной и дополнительных осадок сваи в составе куста

№ графика	Начальное значение осадки, мм	Конечное значение осадки, мм	Абсолютная разница значений осадок, мм	Относительная величина уменьшения осадки
1	3,336	2,503	0,833	1,333
2	2,986	2,308	0,678	1,294
3	2,906	2,288	0,618	1,270
4	2,685	2,144	0,541	1,252
5	2,555	2,092	0,463	1,221
6	2,544	2,107	0,437	1,207
7	2,254	1,929	0,325	1,168
8	2,193	1,912	0,281	1,147
9	1,893	1,748	0,145	1,083
10	3,336	2,685	0,651	1,242
11	2,906	2,254	0,652	1,289
12	2,859	2,405	0,454	1,189
13	2,572	2,118	0,454	1,214
14	2,544	1,893	0,651	1,344
15	2,503	2,144	0,359	1,167
16	2,331	1,877	0,454	1,242
17	2,288	1,929	0,359	1,186
18	2,107	1,748	0,359	1,205

Исходя из результатов величин абсолютной и относительной осадок строк 1–9 (табл. 1), при увеличении длины сваи в 2 раза происходит снижение осадки на 0,145–0,833 мм (в 1,083–1,333 раза). При увеличении размера поперечного сечения сваи в 1,3 раза (строки 10–18 табл. 1) отмечается снижение осадки на 0,359–0,652 мм (в 1,167–1,344 раз).

Выводы. Математический эксперимент выявил влияние геометрических параметров фундамента на осадки свай в составе куста, рассчитываемых по МКВВ, а именно: зависимости длины сваи, размера стороны поперечного сечения и расположения ее в кусте на величину осадки индивидуальной сваи. Качественный и количественный анализ результатов показал, что меньшее влияние на величину осадки сваи (*S*) оказывает ее длина (*L*) и большее влияние — размер стороны поперечного сечения сваи (*d*).

Ключевые слова: куст свай; осадка сваи; метод коэффициентов взаимного влияния; численная модель; параметры варьирования; длина сваи; поперечное сечение сваи.

Список литературы

- 1. Боков И.А. О применимости метода коэффициентов взаимного влияния к расчету свайных фундаментов. Сравнение с результатами натурных экспериментов и наблюдений // Вестник НИЦ «Строительство». 2019. № 1(20). С. 14–24. EDN: VTBFKS
- 2. СП 24.13330.2021. Свайные фундаменты. Актуализированная версия СНиП 2.02.03-85 // АО «НИЦ «Строительство» / НИИОСП им. Н.М. Герсеванова. Москва: Минстрой, 2022. 113 с.

Сведения об авторе:

Анна Павловна Трапезникова — студентка, группа 23ФПГС-115М, факультет промышленного и гражданского строительства; Самарский государственный технический университет, Самара, Россия. E-mail: annatrapeznikova1807@gmail.com

Сведения о научном руководителе:

Андрей Валентинович Мальцев — кандидат технических наук, доцент; доцент кафедры строительной механики, инженерной геологии, оснований и фундаментов; Самарский государственный технический университет, Самара, Россия. E-mail: geologof@yandex.ru