Проблемы реализации процесса оценки качества в строительном производстве

В.В. Черная

Самарский государственный технический университет, Самара, Россия

Обоснование. Современное строительство характеризуется высокой степенью технологической сложности, многоэтапностью и влиянием внешних факторов, что усложняет обеспечение стабильного качества производственного процесса. Возникающие проблемы контроля качества снижают безопасность, увеличивают издержки и могут приводить к дефектам конструкции. Поэтому актуально проведение комплексного анализа существующих проблем и методов контроля качества с целью повышения эффективности строительного производства.

Цель — выявление и анализ проблем, возникающих при оценке качества строительного производства, а также разработка практических решений для повышения эффективности контроля и соответствия строительных объектов нормативным требованиям.

Методы исследования:

- Анализ нормативной документации (ГОСТ, СНиП, СП).
- Анализ производственного процесса бетонирования.
- Метод FMEA (анализ видов и последствий потенциальных дефектов) согласно ГОСТ 51814.2-2001.
- Сравнительный анализ методов контроля качества (визуальный, инструментальный, лабораторный).
- Системный подход к выявлению факторов риска.

Результаты. В рамках написания статьи были выявлены основные проблемы, затрудняющие эффективную оценку качества строительного производства. К ним относятся высокая изменчивость строительных условий, сложность интеграции различных методов контроля, субъективность экспертных оценок, ограниченность и устаревание нормативной базы, а также недостаточная цифровизация процессов (табл. 1). На основе анализа производственного процесса бетонирования методом FMEA были установлены наиболее критичные этапы, подверженные рискам: укладка бетонной смеси (ПЧР = 192), установка опалубки, подача смеси и виброуплотнение (все с ПЧР = 180). Это позволило определить ключевые источники дефектов и предложить меры по их предотвращению.

Таблица 1. Протокол анализа, причин и последствий потенциальных дефектов (критические ПЧР)

Этап процесса	Потенциальный отказ	Причины отказа	Последствия отказа	S	0	D	ПЧР	Рекомендуемые меры
Уста- новка и сборка опалубки	Неправильный монтаж опалубки	— недостаточный контроль; — ошибки персо- нала	— утечка бетона; — деформация стен	9	5	4	180	— внедрение чек-листов контроля; — геодезическая провер-ка уровней и вертикалей
Подача бетонной смеси	Неравномерная подача или простои	— плохая органи- зация подачи; — перерывы в бе- тонировании	– холодные швы; – снижение прочности стен	9	5	4	180	 планирование графика подачи бетона; резервирование обо- рудования
Укладка бетонной смеси	Неравномерное распределение смеси	– ошибки техники укладки; – недостаточный контроль по слоям	– воздушные пустоты; – полости в бетоне	8	6	4	192	— использование квалифицированного персонала; — контроль качества слоями
Вибри- рование бетонной смеси	Недовибрирова- ние или пере- вибрирование	— неправильная техника; — неисправность	— воздушные раковины; — расслоение бетона	9	4	5	180	 обучение персонала; проверка и своевре- менное обслуживание вибраторов

Несмотря на определенные недостатки, метод FMEA подтвердил свою эффективность как инструмент анализа потенциальных дефектов и управления рисками. На основании результатов были разработаны практические рекомендации, включающие использование цифровых технологий, внедрение автоматизированного контроля, регулярное обновление нормативной документации и повышение квалификации персонала, что в совокупности позволяет повысить качество, безопасность и эффективность строительного производства.

Выводы. Метод FMEA позволяет эффективно выявлять и устранять потенциальные дефекты на этапе производства, особенно при его интеграции с современными цифровыми средствами контроля. Устранение выявленных проблем в системе контроля качества способствует снижению рисков, повышению безопасности и эффективности строительного процесса. Работа подчеркивает необходимость развития нормативной базы, цифровизации процессов и систематического подхода к управлению качеством.

Ключевые слова: качество строительства; контроль качества; FMEA-анализ; бетонные работы; нормативная база; строительное производство; риски; ПЧР; управление качеством.

Сведения об авторе:

Вероника Викторовна Черная— студентка, группа 3-СТФ-102; Самарский государственный технический университет, Самара, Россия. E-mail: veronikael03@mail.ru

Сведения о научном руководителе:

Екатерина Владимировна Князькина — кандидат экономических наук, доцент кафедры СИТЭЗиС; Самарский государственный технический университет, Самара, Россия. E-mail: evk162@mail.ru