Risk factors of drug-induced diseases. Part 2. Comorbid diseases and lifestyle factors


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Comorbid diseases increase the likelihood of developing drug-induced diseases, altering the pharmacokinetics and pharmacodynamics of drugs. It is necessary to consider the pharmacokinetics and pharmacodynamics of each drug. In patients with kidney diseases, widely used drugs such as в-blockers, diuretics, insulin, angiotensin-converting enzyme (ACE) inhibitors, acetylsalicylic acid, warfarin, clopi-dogrel can cause side effects. In addition, kidney disease alters the absorption, distribution, and clearance of drugs. Moreover, chronic renal failure has been shown to significantly reduce the nonrenal clearance and alter bioavailability of drugs metabolized by the liver. Liver failure leads not only to a decrease in the clearance and elimination of drugs, but also disrupts the binding of drugs to blood plasma proteins, changing the processes of distribution and excretion, the activity of various enzymes of cytochrome P450. Obesity is another widespread problem. Many questions require further study. However, it is known that obesity affects many physiological processes, changes hemodynamics (including cardiac output), intestinal permeability, liver and kidney function. Therefore, these patients need assessment of risk factors and personalized dosing. Despite reports of an increased level of glomerular filtration rate (GFR) in obese patients, renal drug clearance does not necessarily increase. Glomerular hyperfiltration is a compensatory mechanism that develops due to an increased metabolic demand. In the long term, increased intraglomerular pressure leads to decline in GFR and chronic kidney disease. There are also other modifiable risk factors for the development of drug-induced diseases, including bad habits: smoking, alcohol consumption, abuse substance. The constituents of tobacco smoke can accelerate the metabolism of many drugs, which leads to a decrease drug concentration in whole blood and a decrease in their effectiveness. The intake of alcohol and illegal drugs is associated not only with the development of many well-known diseases but also drug-induced diseases. It is imperative to inform patients about the possible consequences, as well as to increase adherence to a healthy lifestyle.

Full Text

Restricted Access

About the authors

D. A Sychev

Russian Medical Academy of Continuing Professional Education

Moscow, Russia

Olga D. Ostroumova

Russian Medical Academy of Continuing Professional Education

Email: ostroumova.olga@mail.ru
Dr. Sci. (Med.), Professor, Head of the Chair of Therapy and Polymorbid Diseases n.a. Academician M.S. Vovsi Moscow, Russia

A. P Pereverzev

Russian Medical Academy of Continuing Professional Education

Moscow, Russia

A. I Kochetkov

Russian Medical Academy of Continuing Professional Education

Moscow, Russia

M. V Klepikova

Russian Medical Academy of Continuing Professional Education

Moscow, Russia

E. Yu Ebzeeva

Russian Medical Academy of Continuing Professional Education

Moscow, Russia

V. A De

Russian Medical Academy of Continuing Professional Education

Moscow, Russia

References

  1. Tisdale J.E., Miller D.A. (ed.). Drug Induced Diseases: Prevention, Detection, and Management. 3rd Ed. Bethesda, Md.: American Society of Health-System Pharmacists, 2018. 1399 p.
  2. Kellum J.A, Lameire N, Aspelin P, et al. Kidney disease: Improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2012;2(1):1-138. Doi: 10.1038/ kisup.2012.1.
  3. Клинические рекомендации: «Хроническая болезнь почек (ХБП)». 2021. ID:KP469 URL: https://cr.minzdrav.gov.ru (дата обращения: 29.09.2021).
  4. Verbeeck R.K., Musuamba F.T. Pharmacokinetics and dosage adjustment in patients with renal dysfunction. Eur J Clin Pharmacol 2009;65(8):75 7- 73. doi: 10.1007/s00228-009-0678-8.
  5. Naud J., Noiin T.D., Lebiond F.A., et al. Current understanding of drug disposition in kidney disease. Clin Pharmacol. 2012;52(Suppl. 1):S10-22. doi: 10.1177/0091270011413588.
  6. Chapin E., Zhan M., Hsu V.D., et al. Adverse safety events in chronic kidney disease: the frequency of "multiple hits." Clin J Am Soc Nephrol. 2010;5(1):95-101. Doi: 10.2215/ CJN.06210909.
  7. Ginsberg J.S., Zhan M., Diamantidis C.J., et al. Patient-reported and actionable safety events in CKD. J Am Soc Nephrol. 2014;25(7):1564-73. doi: 10.1681/ASN.2013090921.
  8. Okabe H., Hashimoto Y, Inui K.L. Pharmacokinetics and bioavailability of tacrolimus in rats with experimental renal dysfunction. J Pharm Pharmacol. 2000;52(12):1467-72. doi: 10.1211/0022357001777676.
  9. Kanfer A., Stamatakis G., Torlotin J.C., et al. Changes in erythromycin pharmacokinetics induced by renal failure. Clin Nephrol. 1987;27(3):147-50.
  10. Rowland M., Tozer T.N. Clinical pharmacokinetics: concepts and applications, 3rd ed. Lippincott Williams &Wilkins, Philadelphia. 1995:616.
  11. Sanderink G.J., Guimart C.G., Ozoux M.L., et al. Pharmacokinetics and pharmacodynamics of the prophylactic dose of enoxaparin once daily over 4 days in patients with renal impairment. Thromb Res. 2002;105(3):225-31. Doi: 10.1016/ s0049-3848(02)00031-2.
  12. Noris M, Remuzzi G. Uremic bleeding: closing the circle after 30 years of controversies? Blood. 1999;94(8):2569-74. doi: 10.1182/blood. V94.8.2569.420k13_2569_2574.
  13. Brophy D.F., Sica D.A. Use of enoxaparin in patients with chronic kidney disease: safety considerations. Drug Saf. 2007;30(11):991-94. doi: 10.2165/00002018-200730110-00001.
  14. Lee W.M., Squires R.H., Nyberg S.L., et al. Acute liver failure: summary of a workshop. Hepatol. 2008;47(4):1401-15. doi: 10.1002/hep.22177.
  15. Verbeeck R.K. Pharmacokinetics and dosage adjustment in patients with hepatic dysfunction. Eur J Clin Pharmacol. 2008;64(12):1147-61. doi: 10.1007/s00228-008-0553-z
  16. Power B.M., Forbes A.M., van Heerden P.V., Ilett K.F Pharmacokinetics of drugs used in critically ill adults. Clin Pharmacokinet. 1998;34(1):25-56. doi: 10.2165/00003088-199834010-00002.
  17. Davis M. Cholestasis and endogenous opioids: liver disease and exogenous opioid pharmacokinetics. Clin Pharmacokinet. 2007;46(10):825-50. doi: 10.2165/00003088-200746100-00002.
  18. Andreasen P.B., Hutters L. Paracetamol (acetaminophen) clearance in patients with cirrhosis of the liver. Acta Med Scand. Suppl. 1979;624:99-105. doi: 10.1111/j.0954-6820.1979.tb00728.x.
  19. Dobre D, Borer J.S., Fox K., et al. Heart rate: a prognostic factor and therapeutic target in chronic heart failure. The distinct roles of drugs with heart rate-lowering properties. Eur J Heart Fail. 2014;16(1):76-85.
  20. Htet H., Saint N.A., Lwin M.A., Kyan A Pharmacokinetic Changes in Congestive Heart Failure. JMSCR. 2017;05(07):24727-34. doi: 10.18535/jmscr/v5i7.71.
  21. Schwartz J.B., Taylor A., Abernethy D., et al. Pharmacokinetics and pharmacodynamics of enalapril in patients with congestive heart failure and patients with hypertension. J Cardiovasc Pharmacol. 1985;7(4):767-76. doi: 10.1097/00005344-198507000-00023.
  22. Giudicelli J.F., Richer C., Mattei A. Pharmacokinetics and biological effects of captopril and hydrochlorothiazide after acute and chronic administration either alone or in combination in hypertensive patients. Br J Clin Pharmacol. 1987;23(Suppl. 1):S51-63. Doi: 10.1111/ j.1365-2125.1987.tb03122.x.
  23. Saito M., Kawana J, Ohno T. et al. Population pharmacokinetics of R- and S-carvedilol in Japanese patients with chronic heart failure. Biol. Pharm. Bull. 2010;33(8):1378-84. doi: 10.1248/bpb.33.1378.
  24. Lipsic E., van Veldhuisen D.J. Nebivolol in chronic heart failure: current evidence and future perspectives. Expert Opin Pharmacother. 2010;11(6):983-92. doi: 10.1517/14656561003694650.
  25. Lo M.W., Goldberg M.R., McCrea J.B., et al. Pharmacokinetics of losartan, an angiotensin II receptor antagonist, and its active metabolite EXP3174 in humans. Clin Pharmacol Ther 1995;58(6):641-49. doi: 10.1016/0009-9236(95)90020-9.
  26. Machida M., Komatsu T., Fujimoto T., et al. The effect of carvedilol on plasma digoxin concentration in patients with chronic heart failure. Jpn J Ther Drug Monit. 2007;24(4):155-61.
  27. lesne M. Comparison of the pharmacokinetics and pharmaco- dynamics of torasemide and furosemide in healthy volunteers. Arzneimittelforschung. 1988;38(1A):160-63.
  28. GBD 2015 Obesity Collaborators, Afshin A., Forouzanfar M.H., et al. Health effects of overweight and obesity in 195 countries over 25 Years. N Engl J Med. 2017;377(1):13-27. doi: 10.1056/NEJMoa1614362.
  29. Knibbe C.A.J., Brill M.J.E., Van Rongen A., et al. Drug disposition in obesity: Toward evidence-based dosing. Ann Rev Pharmacol Toxicol. 2015;55:149-67. doi: 10.1146/annurev-pharmtox-010814-124354.
  30. Teixeira T.F.S., Souza N.C.S., Chiarello PG., et al. Intestinal permeability parameters in obese patients are correlated with metabolic syndrome risk factors. Clin Nutr. 2012;31(5):735-40. doi: 10.1016/j.clnu.2012.02.009.
  31. Xing J., Chen J.D.Z. Alterations of gastrointestinal motility in obesity. Obes Res. 2004;12(11):1723-32. doi: 10.1038/oby. 2004.213.
  32. Lemmens H.J.M., Bernstein D.P, Brodsky J.B. Estimating blood volume in obese and morbidly obese patients. Obes Surg. 2006;16(6):773-76. doi: 10.1381/096089206777346673.
  33. Farrell G.C., Teoh N.C., Mccuskey R.S. Hepatic microcirculation in fatty liver disease. Anat Rec Adv Integr Anat. Evol. Biol. 2008;291(6):684-92. doi: 10.1002/ar.20715.
  34. Cheymol G., Poirier J.M., Barre J., et al. Comparative pharmacokinetics of intravenous propranolol in obese and normal volunteers. J Clin Pharmacol. 1987;27(11):874- 79. Doi: 1 4604.1987.tb05582.x.
  35. Ribstein J., du Cailar G., Mimran A. Combined renal effects of overweight and hypertension. Hypertension. 1995;26(4):610-15. doi: 10.1161/01.hyp.26.4.610.
  36. Kovesdy C.P, Furth S., Zoccali C., et al. Obesity and kidney disease: Hidden consequences of the epidemic. Indian J Nephrol. 2017;27(2):85-92. doi: 10.4103/ijn.IJN_61_17.
  37. Smit C., De Hoogd S., Bruggemann R.J.M., Knibbe C.A.J. Obesity and drug pharmacology: a review of the influence of obesity on pharmacokinetic and pharmacodynamic parameters. Expert Opin Drug Metab Toxicol. 2018;14(3):275-85. doi: 10.1080/17425255.2018.1440287.
  38. Sparreboom A., Wolff A.C., Mathijssen R.H., et al. Evaluation of alternate size descriptors for dose calculation of anticancer drugs in the obese. JClin. Oncol. 2007;25(30):4707-13. Doi: 10.1200/ JCO.2007.11.2938.
  39. Allard S., Kinzig M., Boivin G., et al. intravenous ciprofloxacin disposition in obesity. Clin Pharmacol Ther. 1993;54(4):368-73. Doi: 10.1038/ clpt.1993.162.
  40. Chiney M.S., Schwarzenberg S.J., Johnson L.A. Altered xanthine oxidase and N-acetyl transferase activity in obese children. Br J Clin Pharmacol. 2011;72(1):109-15. doi: 10.1111/j.1365-2125.2011.03959.x.
  41. Nguyen L., Leger F., Lennon S., Puozzo C. Intravenous busulfan in adults prior to haematopoietic stem cell transplantation: a population pharmacokinetic study. Cancer Chemother Pharmacol. 2006;57(2):191-98. doi: 10.1007/s00280-005-0029-0.
  42. Martin J.H., Saleem M., Looke D. Therapeutic drug monitoring to adjust dosing in morbid obesity - a new use for an old methodology. Br J Clin Pharmacol. 2012;73(5):685-90. doi: 10.1111/j.1365-2125.2011.04159.x.
  43. Rodvold K.A., George J.M., Yoo L. Penetration of anti-infective agents into pulmonary epithelial lining fluid: focus on antibacterial agents. Clin Pharmacokinet. 2011;50(10):637-64. doi: 10.2165/11594090-000000000-00000.
  44. Marchand S., Chauzy A., Dahyot-Fizelier C., et al. Microdialysis as a way to measure antibiotics concentration in tissues. Pharmacol Res. 2016;111:201-7. Doi: 10.1016/j. phrs.2016.06.001.
  45. May M., Engeli S. Characteristics of drug treatment of obese patients. Internistische Praxis. 2018;58:674-76.
  46. Smit C., De Hoogd S., Bruggemann R.J.M., et al. Obesity and drug pharmacology: a review of the influence of obesity on pharmacokinetic and pharmacodynamic parameters. Expert Opin Drug Metab Toxicol. 2018;14(3):275-85. doi: 10.1080/17425255.2018.1440287.
  47. Croxson M.S., Ibbertson H.K. Serum digoxin in patients with thyroid disease. Br Med J. 1975(5983);3:566-68. Doi: 10.1136/ bmj.3.5983.566.
  48. Rao М. PR, Panduranga P, Sulaiman K., et al. Digoxin toxicity with normal digoxin and serum potassium levels: beware of magnesium, the hidden malefactor. J Emerg Med. 2013;45(2):e31-4. doi: 10.1016/j.jemermed.2012.11.111.
  49. Trocha M., Merwid-LadA., Ksiadzyna D., Szandruk M. Impact of malnutrition on drugs' action. Gastroenterol. Polska. 2010;17(1):11-6.
  50. Клинические рекомендации: «Хроническая сердечная недостаточность». 2020. ID: КР156. URL: https://cr.minzdrav.gov.ru (дата обращения: 29.09.2021).
  51. Клинические рекомендации: «Ожирение». 2020. ID: КР28. URL: https://cr.minzdrav.gov.ru (дата обращения: 29.09.2021).
  52. Клинические рекомендации: «Недостаточность питания (мальнутриция) у пациентов пожилого и старческого возраста». 2021. ID: КР615. URL: https://cr.minzdrav.gov.ru (дата обращения: 29.09.2021).
  53. Тарловская Е.И., Козиолова Н.А., ЧесниковаА.И. Влияние образа жизни на эффективность и безопасность лекарственных препаратов в кардиологической практике: что должен учитывать врач? Российский кардиологический журнал. 2016;(1):51-9.
  54. Сычев Д.А, Остроумова О.Д., Переверзев А.П. и др. Курение как фактор риска развития лекарственно-индуцированных заболеваний. Фарматека 2021;28(5):8-16.
  55. Kroon L.A. Drug interactions with smoking. Am J Health-Syst Pharm. 2007;64(18):1917-21. doi: 10.2146/ajhp060414.
  56. Molden E., Spigset O. Tobacco smoking and drug interactions. Tidsskr Nor Laegeforen. 2009;129(7):632-33. Doi: 10.4045/ tidsskr.08.0122.
  57. Washio I., Maeda M., Sugiura C., et al. Cigarette smoke extract induces CYP2B6 through constitutive androstane receptor in hepatocytes. Drug Metab Dispos. 2011;39(1):1-3. doi: 10.1124/dmd.110.034504.
  58. Леонова М.В. Влияние курения на эффективность кардиоваскулярных препаратов. Consilium medicum. 2013;15(1):50-5.
  59. Desai H.D., Seabolt J., Jann M.W. Smoking in patients receiving psychotropic medications: a pharmacokinetic perspective. CNS Drugs. 2001;15(6):469-94. doi: 10.2165/00023210200115060-00005.
  60. Heishman S.J., Kleykamp B.A., Singleton E.G. Meta-analysis of the acute effects of nicotine and smoking on human performance. Psychopharmacol (Berl). 2010;210(4):453-46. Doi:10.1007/ s00213-010-1848-1.
  61. Сычев Д.А., Остроумова О.Д., Переверзев А.П. и др. Алкоголь как фактор риска лекарственно-индуцированных заболеваний. Качественная клиническая практика. 2021;(2):52-66.
  62. Alcohol-related drug interactions Pharmacist's Letter/Prescriber’s Letter 2008241240106. URL: http://hamsnetwork.org/meds/interactions.pdf (Link is active on: 20.09.2021).
  63. Зупанец И.А., Бездетко Н.В., Деримедведь Л.В. Фармацевтическая опека: клинико-фармацевтические аспекты применения алкоголя в медицине. Провизор. 2003;(4):12-7.
  64. Fraser A.G. Pharmacokinetic interactions between alcohol and other drugs. Clin Pharmacokinet. 1997;33(2):79-90. doi: 10.2165/00003088199733020-00001.
  65. Kitto W. Antibiotics and ingestion of alcohol. J Am Med Associat. 1965;193:411.
  66. Knockaert L., Descatoire V, Vadrot N., et al. Mitochondrial CYP2E1 is sufficient to mediate oxidative stress and cytotoxicity induced by ethanol and acetaminophen. Toxicol In Vitro. 2011;25(2):475-84. Doi: 10.1016/j. tiv.2010.11.019.
  67. Andersson T., Miners J.O., Veronese M.E., et al. Diazepam metabolism by human liver microsomes is mediated by both S- mephenytoin hydroxylase and CYP3A isoforms. Br J Clin Pharmacol. 1994;38(2):131-37. doi: 10.1111/j.1365-2125.1994.tb04336.x.
  68. Tatsumi A., Ikegami Y, Morii R., et al. Effect of ethanol on S-warfarin and diclofenac metabolism by recombinant human CYP2C9.1. Biol Pharm Bull. 2009;32(3):517-19. doi: 10.1248/bpb.32.517.
  69. Hirsh J., Fuster V, Ansell J., Halperin J.L. American Heart Association/American College of Cardiology Foundation guide to warfarin therapy. J Am Coll Cardiol. 2003;41(9):1633-52. Doi: 10.1016/ S0735-1097(03)00416-9.
  70. Johnson G.R., Wen S.F Syndrome of flank pain and acute renal failure after binge drinking and nonsteroidal anti-inflammatory drug ingestion. J Am Soc Nephrol. 1995;5(9):1647-52. doi: 10.1681/ASN.V591647.
  71. Linnoila M., Mattila M.J., Kitchell B.S. Drug interactions with alcohol. Drugs. 1979;18(4):299-311. doi: 10.2165/00003495 -197918040 00003.
  72. Bisaga A., Evans S.M. The acute effects of gabapentin in combination with alcohol in heavy drinkers. Drug Alcohol Depend. 2006;83(1):25-doi: 10.1016/j.drugalcdep.2005.10.008.
  73. Anderson L.A. Drug and Alcohol Interactions -What to Avoid. URL: https://www.drugs.com/article/medications-and-alcohol.html (Link is active on: 22.09.2021)
  74. Наркология: национальное руководство. Под ред. Н.Н. Иванца, И.П. Анохиной, М.А. Винниковой. М., 2016. 944 p.
  75. Guidance on the administration of medicines to inpatients believed to have consumed alcohol. URL: http://www.sussexpartnership.nhs.uk/sites/default/files/documents/alcohol_consumption_ guidance_on_admin_of_meds_0412-_final_0. pdf (Link is active on: 22.09.2021).
  76. Психоактивное вещество. URL: www.glossary.ru (ссылка активна на: 22.12.2021).
  77. Radwan M.M., Elsohly M.A., Slade D., et al. Biologically active cannabinoids from high-potency Cannabis sativa. Nat Prod. 2009;72(5):906-11. doi: 10.1021/np900067k. (In Russ.)].
  78. Zendulka O., Dovrt§lova G., Noskova K., et al. Cannabinoids and Cytochrome P-450 Interactions. Curr Drug Metab. 2016;17(3):206-26. Doi: 10.2 174/1389200217666151210142051.
  79. Yamaori S., Koeda K., Kushihara M., et al. Comparison in the in vitro inhibitory effects of major phytocannabinoids and polycyclic aromatic hydrocarbons contained in marijuana smoke on cytochrome P450 2C9 activity. Drug Metab Pharmacokinet. 2012;27(3):294-300. doi: 10.2133/dmpk.dmpk-11-rg-107.
  80. Yamreudeewong W., Wong H.K., Brausch L.M., Pulley K.R. Probable interaction between warfarin and marijuana smoking. Ann Pharmacother. 2009;43(7):1347-53. Doi: 10.1345/ aph.1M064.
  81. Karschner E.L., Schwilke E.W., Lowe R.H., et al. Implications of plasma Delta9-tetra hydro cannabinol, 11- hydroxy-THC, and 11- nor-9-carboxy-THC concentrations in chronic cannabis smokers. J Anal Toxicol. 2009;33(8):469-doi: 10.1093/jat/33.8.469.
  82. Mega J.L., Simon T. Pharmacology of antithrombotic drugs: an assessment of oral antiplatelet and anticoagulant treatments. Lancet. Lond Engl. 2015;386(9990):281-91. doi: 10.1016/S0140-6736(15)60243-4.
  83. Zhu H.-J., Wang J.-S., Markowitz J.S., et al. Characterization of P- glycoprotein inhibition by major cannabinoids from marijuana. J Pharmacol Exp Ther. 2006;317(2):850-57. Doi: 10.1124/ jpet.105.098541.
  84. Watanabe K., Yamaori S., Funahashi T., et al. Cytochrome P450 enzymes involved in the metabolism of tetrahydrocannabinols and cannabinol by human hepatic microsomes. Life Sci. 2007;80(15):1415-19. Doi: 10.1016/j. lfs.2006.12.032.
  85. Flomenbaum Goldfrank, et al. Goldfrank's Toxicologic Emergencies. 8th Edition. McGraw Hill, 2006. 2170 p.
  86. Dean A. Pharmacology of psychostimulants. In: A. Baker, N. Lee, L. Jenner eds. Models of intervention and care for psychostimulant users. 2nd ed. Canberra: Australian Government Department of Health and Ageing. 2004. P. 35-50.
  87. Brownlow H.A., Pappachan J. Pathophysiology of cocaine abuse. Eur I Anaesthesiol. 2002;19(6):395-414. Doi: 10.1017/ s0265021502000650.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Bionika Media