УДК 616.12-008.331.1- 072.7-053.2:616.13

ОЦЕНКА ПОКАЗАТЕЛЕЙ РИГИДНОСТИ МАГИСТРАЛЬНЫХ АРТЕРИЙ С ИСПОЛЬЗОВАНИЕМ СУТОЧНОГО МОНИТОРИРОВАНИЯ АРТЕРИАЛЬНОГО ДАВЛЕНИЯ ДЛЯ РАННЕЙ ДИАГНОСТИКИ АРТЕРИАЛЬНОЙ ГИПЕРТЕНЗИИ У ДЕТЕЙ

Л. В. Светлова, Е. С. Дергачев, Я. А. Ананьева, В. Б. Жукова, Н. В. Шахова, М. Я. Ледяев

Кафедра детских болезней ВолГМУ

Представлены результаты исследований показателей ригидности магистральных артерий — времени распространения пульсовой волны (РТТ), dp/dt, полученные при обработке данных суточного мониторирования с использованием носимого регистратора BPLab. Показана устойчивая отрицательная корреляционная связь в суточной динамике показателя РТТ с систолическим, диастолическим, пульсовым АД и ЧСС. Доказана возможность использования показателя РТТ, определяемого на основе анализа данных мониторирования прибором BPLab МнСДП-3, в качестве дополнительного показателя ригидности магистральных артерий при проведении клинико-физиологических исследований.

Ключевые слова: ригидность, время распространения пульсовой волны, суточное мониторирование артериального давления.

EVALUATION OF THE INDICES OF RIGIDITY OF GREAT ARTERIES USING THE METHOD OF 24-H BP MONITORING FOR EARLY DIAGNOSTICS OF HYPERTENSION IN CHILDREN

L. V. Svetlova, E. S. Dergachev, Y. A. Ananieva, V. B. Zukova, N. V. Shakhova, M. Y. Ledyaev

The paper presents the results of studying the rigidity indices of great arteries, namely the time of pulse transit time (PTT), dp/dt, which were obtained as a result of processing the 24-hour monitoring data using a portable register BPLab. A stable negative correlation between the PTT index and systolic, diastolic, and pulse BP and heart rate in the 24-h dynamics was revealed. The possibility of using the PWP index calculated on the basis of the data of monitoring BP using BPLab MnSDP-3 as an additional rigidity index of great arteries while making clinical and physiological studies was proved.

Key words: rigidity, pulse transit time (PTT), 24-hour BP monitoring.

Физические свойства крупных артерий и, в частности, аорты в последние годы стали предметом интенсивного изучения в клинико-физиологических исследованиях. Это связано с тем, что при основных кардиологических заболеваниях вследствие снижения эластичности (повышения жесткости, или «ригидности») магистральные сосуды утрачивают одну из ключевых функций — демпфирования пульсовых колебаний артериального давления (АД), связанных с циклической деятельностью сердца. При этом наблюдается не только повышение систолического и пульсового АД (а также скорости подъема АД), но и происходят неблагоприятные изменения фазовой структуры пульсового АД за счет более раннего возврата волны отражения [3, 4].

В настоящее время с целью выявления повышенной ригидности магистральных артерий наиболее часто используется метод определения скорости распространения пульсовой волны в аорте методом традиционного «каротидно-феморального» наложения сфигмодатчиков. В зависимости от модификаций серийно выпускаемых для этих целей аппаратов процедура проведения исследования является в большей или меньшей степени трудоемкой и требует достаточного опыта работы.

В последние годы находит распространение полностью автоматизированная версия сфигмоанализатора (VS-1000, Fukuda), в которой реализован метод определения скорости распространения пульсовой волны при «лодыжечно-плечевом» расположении датчиков [6]. Проведенные в Японии исследования показали высокую степень корреляции получаемых показателей со скоростью пульсовой волны в аорте, определяемой инвазивным способом, а также хорошую воспроизводимость метода.

Альтернативный метод оценки податливости сосудов основан на измерении времени распространения пульсовой волны (в англоязычной литературе — PTT, Pulse Transit Time) — это время, прошедшее с момента открытия клапана аорты до заметного начала роста давления крови в конкретном участке артерии (начало фронта пульсовой волны).

Для регистрации начальной точки обычно используется запись электрокардиограммы (ЭКГ). Согласно одним источникам [1], она совпадает с окончанием QRS-комплекса, согласно другим, приблизительно на 20 мс позднее. По-видимому, точное время открытия клапана аорты (в привязке к электрическим потенциалам сердца) не только индивидуально для каждого субъекта, но и может варьироваться для конкретного

Becthuk Bon(MV)

человека (например, в зависимости от частоты сердечных сокращений). Учитывая этот факт, а также то, что конец QRS-комплекса зачастую проявляется на записи ЭКГ менее четко, чем максимум R-зубца, ряд исследователей и разработчиков аппаратуры [5, 7] предпочитают за начало отсчета РТТ принимать именно R-зубец, осознавая при этом, что получаемая в результате величина несколько меньше истинного времени распространения пульсовой волны [2].

Носимый суточный монитор АД МнСДП-3 (ВРLаb), выпускаемый ООО «Петр Телегин», использует осциллометрический метод измерения АД и регистрирует в процессе измерения всю информацию, необходимую для измерения РТТ, а именно — записи осциллометрической кривой (сфигмограммы) и сигнала ЭКГ с дискретизацией 10 мс. Регистрируемые сигналы могут быть автоматически обработаны с целью определения текущего значения РТТ, усредненного по времени измерения АД (обычно от 10 до 50 кардиоциклов), и исследования корреляции данной величины со значениями систолического (САД), диастолического (ДАД), пульсового АД (ПАД) и частоты сердечных сокращений (ЧСС) [3].

Согласно методическим рекомендациям разработчика прибора BPLab третьей модификации (МнСДП-3) ООО «Петр Телегин» (2004) значения времени распространения пульсовой волны, рассчитанные по результатам показателей суточного мониторирования АД, достаточно достоверны и могут быть использованы в практической деятельности врача для оценки состояния упругости сосудистой стенки. Кроме того, для оценки упругости стенки артерий может быть использован показатель dp/dt. Однако в доступной нам литературе не встречались данные о величине этих показателей у детей, а также о связи РТТ и dp/dt с гемодинамическими показателями.

ЦЕЛЬ РАБОТЫ

Оценка адекватности метода определения времени распространения пульсовой волны и dp/dt по данным суточного мониторирования АД у детей подросткового возраста.

МЕТОДИКА ИССЛЕДОВАНИЯ

Нами проанализированы результаты суточного мониторирования артериального давления (СМАД) у 60 подростков, в возрасте от 12 до 18 лет. Пациенты были разделены на две группы. В первую группу были включены 30 подростков с верифицированной эссенциальной АГ. Во вторую, контрольную группу были включены 30 подростков I—II групп здоровья с уровнем АД в пределах от 5 до 89 процентиля.

В настоящем исследовании величину показателя РТТ определяли с помощью прибора для бифункционального мониторирования ЭКГ и АД (BPLab МнСДП-3). Прибор позволяет получать оценку РТТ при каждом цикле измерения АД. С этой целью измеря-

ется временной интервал от максимума R-зубца до начала пульсовой волны, регистрируемой в плечевой манжете. Показатель dp/dt определяется как максимальная производная давления в артерии по времени (на переднем фронте пульсовой волны). Этот показатель косвенно отражает нагрузку на стенки сосудов во время прохождения пульсовой волны.

Измерения и расчет скорости распространения пульсовой волны, dp/dt, а также основных гемодинамических показателей (САД, ДАД, ПАД, ЧСС) осуществлялись каждые 15 минут с определением средних величин за каждый час в течение суток и затем по группе среднего квадратичного отклонения и коэффициента вариации. После этого вычислялись коэффициенты корреляции РТТ, dp/dt c САД, ДАД, ПАД и ЧСС.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

Средний возраст обследуемых детей в І группе составил $(15,0\pm1,2)$ лет, а во II группе — $(14,0\pm1,3)$ лет.

Средняя суточная величина РТТ в І группе составила (141,3 ± 9,3) мс (с индивидуальными колебаниями от $(122,5 \pm 4,4)$ мс до $(167,5 \pm 8,3)$ мс, при этом почасовая динамика в течение суток достоверно не отличалась: наименьшее время (134,8 ± 12,5) мс зарегистрировано с 20 до 21 часов, а самый длительный временной интервал зафиксирован с 4 до 5 часов утра (146,9 ± 16,5) мс. В то же время средняя суточная величина РТТ в контрольной группе составила (144,40 ± 9,72) мс [с индивидуальными колебаниями от $(124,7 \pm 7,3)$ до $(178,8 \pm 12,9)$ мс], при этом почасовая динамика в течение суток также достоверно не отличалась: наименьшее время (132,3 \pm 16,7) мс зарегистрировано с 21 до 22 часов, а самый длительный временной интервал зафиксирован с 5 до 6 часов утра (153,8 ± 18,5) мс. Коэффициент вариации для РТТ в целом по группе равнялся $(6,65 \pm 1,33)$ %, что отражает стабильность проводимых измерений. Следует отметить, что полученные в нашем исследовании значения РТТ идентичны таковым, рассчитанным по результатам суточного мониторирования АД в группе взрослых пациентов (150,8 мс, 2004 г.) [2].

Средние значения dp/dt в течение суток в I группе подростков составили (906,1 ± 168,0) мм рт. ст. (с индивидуальными колебаниями от (515,9 ± 87,4) до (1179,1 ± 233,4) мм рт. ст.), при этом наименьшее значение было зарегистрировано с 5 до 6 часов утра (747,7 ± 150,0) мм рт. ст., а наибольшее с 18 до 19 часов вечера (1032,2 ± 250,0) мм рт. ст. Тогда как средние значения dp/dt в течение суток в контрольной группе обследуемых подростков составили (677,4 ± 107,4) мм рт. ст. [с индивидуальными колебаниями от $(555,9 \pm 85,4)$ до $(857,7 \pm 127,2)$ мм рт. ст.], при этом наименьшее значение было зарегистрировано с 4 до 5 часов утра $(565,2 \pm 86,2)$ мм рт. ст., а наибольшее с 19 до 20 часов вечера (758,6 ± 132,0) мм рт. ст.

Becthuk Bon(MV)

Средние значения систолического АД в І группе составили (129,2 \pm 12,4) мм рт. ст. с минимумом в интервале от 2 до 3 часа утра (114,8 ± 10,2) мм рт. ст. и максимумом с 18 до 19 часов (141,9 ± 10,8) мм рт. ст. Аналогичная суточная динамика была характерна для диастолического АД: при средних значениях $(71,3 \pm 11,1)$ мм рт. ст., минимум находился в интервале от 1 до 2 часов утра (59.2 ± 8.9 мм рт.ст.), а максимум с 18 до 19 часов вечера и составил (81,4 ± 11,5) мм рт. ст. Значения пульсового давления в среднем по группе составили (57,7 \pm 6,7) мм рт. ст. с незначительными колебаниями в течение суток от (53.7 ± 8.7) (с 5 до 6 часов утра) до (61,2 ± 11,0) мм рт. ст. (с 20 до 21 часов вечера). Наибольшей лабильностью в течение суток отличалась частота сердечных сокращений: в целом по группе ЧСС равнялась (79,9 ± 13,7) уд./мин, тогда как в интервале от 4 до 5 часов утра зарегистрирована минимальная частота пульса (64,3 ± 13,1) уд./мин, а максимальная ЧСС (92,5 ± 15,5) уд./мин определена с 12 до 13 часов.

При этом средние значения систолического АД в контрольной группе составили (110,9 \pm 10,0) мм рт. ст. с минимумом в интервале от 1 до 2 часов ночи $(99,2 \pm 9,4)$ мм рт. ст. и максимумом с 19 до 20 часов (120,6 ± 8,8) мм рт. ст. Аналогичная суточная динамика была характерна для диастолического АД: при средних значениях (65,5 \pm 9,8) мм рт. ст., минимум находился в интервале от 1 до 2 часов ночи (54,8 ± 7,6) мм рт. ст., а максимум с 18 до 19 часов вечера и составил (73,0 ± 7,9) мм рт. ст. Значения пульсового давления в среднем по группе составили $(45,4 \pm 4,8)$ мм рт. ст. с незначительными колебаниями в течение суток от $(42,6 \pm 5,9)$ (с 4 до 5 часов утра) до $(48,1 \pm 7,0)$ мм рт. ст. (с 21 до 22 часов вечера). Наибольшей лабильностью в течение суток отличалась частота сердечных сокращений: в целом по группе ЧСС равнялась (79,7 ± 12,9) уд./мин, тогда как в интервале от 1 до 2 часов ночи зарегистрирована минимальная частота пульса (64,5 ± 9,4) уд./мин, а максимальная ЧСС (92,2 ± 15,6) уд./мин определена с 12 до 13 часов.

Результаты проведенного корреляционного анализа подтвердили факт об устойчивой отрицательной связи времени распространения пульсовой волны с систолическим, диастолическим, пульсовым АД и ЧСС. При этом самые сильные отрицательные корреляционные связи отмечены между РТТ и ПАД (r = -0.8). В то же время связи РТТ с САД и ЧСС, а также с ДАД хотя и совпадали по направленности, но были средней степени (r = -0.6, r = -0.5 и r = -0.4 соответственно). Следует отметить, что аналогичные направленности корреляций изучаемых параметров были получены и в исследованиях, проведенных у взрослых, однако сила этих связей была значительно меньше (для РТТ с ПАД корреляция составила 0,3, с САД — 0,26, а с 4CC - 0,25) [2].

ЗАКЛЮЧЕНИЕ

Таким образом, результаты проведенных исследований могут служить достаточным обоснованием возможности применения способа оценки ригидности артерий путем расчета времени распространения пульсовой волны и dp/dt при проведении суточного мониторирования артериального давления у детей, что обеспечивает простоту исполнения (неинвазивный способ, запись с помощью одного прибора, автоматический расчет показателей) и отражение суточной динамики значений анализируемых параметров.

Проведенные исследования показали, что у подростков с артериальной гипертензией скорость нарастания давления в артериях в 1,5 раза больше, чем в группе сравнения (показатель dp/dt), что свидетельствует о повышенной ригидности сосудов.

Полученные данные свидетельствуют, что средние значения времени распространения пульсовой волны в группе подростков с АГ и в контрольной группе не различались достоверно, то есть РТТ не может быть использовано в качестве единственного показателя для ранней диагностики АГ у детей подросткового возраста.

Для ранней, комплексной диагностики АГ у детей с применением мониторирования прибором BPLab МнСДП-3 следует использовать традиционные параметры СМАД — средние значения АД, индексы времени, суточные индексы, а также скорость нарастания давления в артериях — dp/dt. Оценку ригидности магистральных артерий по РТТ можно рекомендовать использовать только в качестве дополнительного показателя.

ЛИТЕРАТУРА

- 1. Амосова Е. Н. Клиническая кардиология. Киев: Здоровье, 1998. Т. 1.
- 2. Измерение времени распространения пульсовой волны с использованием суточного мониторирования артериального давления BPLab. ООО «Петр Телегин», 2004 г. http://www.bplab.ru/
- 3. Моисеева Н. М., Пономарев Ю. А., Сергеева М. В., Рогоза А. Н. // Артериальная гипертензия. 2007. Т. 13, № 1. С. 2—6.
- *4.* Blacker J., Guerin A., Pannier B., et al. // Circulation, 1999, № 9. P. 2434—2439.
- 5. Kim Sutton-Tyrrel, Rachel H. Mackey, Richard Holubkov, et al. // Amer. Journ. of Hypertension. 2001. Vol. 14, № 5. P. 463—468.
- 6. Munakata M., Nunokawa T., Ito N., Yoshinaga K. // J. Hypertens. 2001 Vol. 19. P. 23.
- 7. Pulse Wave Transit Time: a new monitoring parameter devoted by Nihon Kohden. http://www.nihonkohden.com/ products/monitor/pwtt/.

Контактная информация:

Ледяев Михаил Яковлевич — д. м. н., профессор, зав. кафедрой детских болезней ВолГМУ, e-mail: myledyaev@gmail.com