GLYCATION STRESS AND PHOTOAGING OF THE SKIN



Cite item

Full Text

Abstract

The study of foreign researchers on glycation mechanisms and the effect of this non-enzymatic reaction on photodamaged skin are presented. The final products of enhanced glycation - AGEs and their pathogenetic role in skin aging are described. AGEs inhibiting substances, focusing on the prevention of the glycation process, are described.

Full Text

В последние годы отмечается постоянный рост интереса к изучению механизмов старения кожи. Проведено большое количество исследований, направленных на изучение патофизиологии старения и поиск методов борьбы с возрастными патологиями [1]. Возрос интерес к конечным продуктам усиленной гликации (advanced glycation end products - AGEs), которые образуются в больших количествах в организме при сахарном диабете и в процессе старения [2]. Кожа подвергается не только негативному воздействию эндогенных процессов старения, но и различным внешним воздействиям, которые приводят к структурным изменениям, тем самым влияя не только на внешний вид, но и на физиологические функции кожи. Существует более 300 теорий старения. Среди них теории клеточного старения, снижения пролиферативного потенциала и укорочения теломер. Ведущую роль в процессе старения отводят продуктам гликации при создании антивозрастных препаратов. Фотостарение и гликационный стресс являются основными причинами деструктивных изменений кожного покрова [3]. Процессу фотостарения сопутствуют такие проявления как морщины, лентиго, опухоли, часто развивающиеся в коже после длительного воздействия ультрафиолетового (УФА, УФB) или инфракрасного излучения. После 40 лет гиперпигментированные пятна могут образовываться на тыльной поверхности рук, и их количество может увеличиваться с возрастом. Гиперпигментированные пятна также образуются у больных пигментной ксеродермой, редким наследственным заболеванием кожи, вызванным дефектом в ферментах, устраняющих повреждающий эффект от УФ-излучения на клетки кожи. В результате мутации становятся неактивными белки, репарирующие ДНК больного, и при всяком повреждении, например при УФ-облучении, дефектных молекул ДНК становится все больше. Пигментная ксеродерма проявляется через несколько месяцев после рождения. Результаты предыдущих исследований показывают, что образование пятен при этом заболевании может быть обусловлено мутацией гена, участвующего в формировании меланина в эпидермальных кератиноцитах и меланоцитах. УФ-индуцированная мутация гена, контролирующего транскрипционный фактор, такого например, как фактор стволовых клеток (SCF), может изменить экспрессию гена в кератиноцитах. Возможны рецептор к SCF, обнаруженный в меланоцитах, - это c-Kit. Он участвует в образовании пигментных пятен [4]. Одной из причин гиперпигментации может быть задержка обмена веществ в эпидермисе. УФ-свет может изменять обмен веществ в эпидермисе путем инактивации ферментов и способствовать отрыву кератиноцитов и шелушению рогового слоя, хотя этот механизм также полностью не изучен. Все эти изменения индуцируют процесс фотостарения и активизируют накопление поздних продуктов усиленной гликации [5, 6]. Гликация представляет собой неферментативную реакцию связывания глюкозы и белков, липидов или нуклеиновой кислоты. Гликацию следует отличать от гликозилирования, которое является ферментативной реакцией. Впервые гликацию описал Луи Камилл Майяр (L. Maillard) в 1912 г., когда в результате этой реакции обнаружил потемнение пищи во время термической обработки (образование коричневой поджаристой корочки) [7]. Спустя 50 лет ученые доказали участие гликации в различных патологиях человеческого организма. Такими патологиями являются старение и сахарный диабет. Реакция Майяра способствует медленной продукции высокореактивных токсичных соединений, называемых «конечными продуктами усиленной гликации» - AGEs [8]. При изучении стареющего организма обращает на себя внимание явление аккумуляции поврежденных продуктов (белков), недоступных для действия деградации, формирующих перекрестные сшивки с липидами. Происходит накопление продуктов, поврежденных липидными перекисями. Одним из основных маркеров старения является липофусцин, внутриклеточные скопления которого могут составлять до 50% от содержимого клетки. Липофусцин - желто-коричневый пигмент, содержащий каротиноиды, которые придают ему окраску, и белки, модифицированные липидами. Его образование инициируется железом и является прямым следствием липидной пероксидации. Стабильной модификации подвергаются в основном долгоживущие экстрацеллюлярные белки, такие как коллаген, кристаллин и эластин. В этом случае модифицирующим агентом являются не продукты перекисного окисления липидов, а глюкоза. Глюкоза взаимодействует с белками, аминокислотами и нуклеиновыми кислотами. При взаимодействии глюкозы с аминогруппами образуются продукты Амадори. Продуктом Амадори является также пентозидин, соединение, образующееся в результате перекрестных сшивок между аргинином, лизином и пентозой. Внеклеточные скопления амилоидного β-пептида (Аβ) ассоциированы с нейродегенеративным процессом, характерным для старческого возраста (болезнь Альцгеймера). Образование Аβ сопряжено с возрастными изменениями обмена глюкозы. Нейрофибриллярные сплетения и сенильные бляшки в тканях мозга пациентов с болезнью Альцгеймера содержат такие AGEs, как пиррамин и пентозидин, которых нет у здоровых людей. В мононуклеарных клетках и в микроглии мозга найден рецептор к AGEs и Аβ (receptor AGE-RAGE). Связывание AGEs и Аβ с рецептором индуцирует генерацию оксидантов. Формирование и накопление модифицированных продуктов - длительный процесс. Характерная черта этих продуктов состоит в том, что они лишены деградации и являются активными индукторами окисления, т.е. интенсифицируют свое собственное воспроизводство. Такие соединения, как AGEs, Аβ и липофусцин, могут быть не только продуктами, но и факторами возрастного окислительного стресса. Формирование конечных продуктов усиленной гликации (AGEs) является сложным молекулярным процессом, включающим в себя простые и более сложные многоэтапные реакции. Конечные продукты образуются в зависимости от характера гликации. Активные формы кислорода и переходные металлы ускоряют процесс старения. Когда в процесс вовлекаются окислительные реакции, продукты называют конечными продуктами усиленной гликации (AGEs) [7, 8]. Накопление поздних продуктов реакции Майяра так же, как и продуктов окисления, происходит в процессе старения и приводит к деструктивным изменениям в тканях. Некоторые агенты (аминогуанидин) существенно снижают реакцию Майяра in vitro. Наиболее распространенным поздним продуктом реакции является карбоксиметиллизин - производное лизина. Карбоксиметиллизин в составе белков служит биомаркером общего оксидативного стресса в организме. Он накапливается с возрастом в тканях, например в коллагене кожи, и его уровень значительно повышен при диабете. AGEs являются очень гетерогенной группой молекул. С момента открытия первого гликозилированного белка - гликозилированного гемоглобина у больных сахарным диабетом были обнаружены многочисленные AGEs. Некоторые из них имеют характерные свойства аутофлюоресценции, что упрощает их идентификацию на месте или in vivo. В настоящее время идентифцированы и изучены наиболее распространенные AGEs в коже человека (см. таблицу). AGEs, образующиеся в естественных условиях, например карбоксиметилкрахмалгидроксилизин, карбоксиэтиллизин, фруктозолизин и метилглиоксаль, не содержат флюоресцентного компонента (protein-AGE). Глиоксаллизиновый и метилглиоксаллизиновый димеры, наоборот, образуют флюоресцентные соединения с поперечными связями, состоящими из белка и AGEs (AGE-protein-AGE). В силу своей реактивности метилглиоксаль играет большую роль в образовании поздних продуктов гликации в процессе реакции Майяра. Более того, он считается важнейшим из гликирующих реагентов, ковалентно связывающихся с аминогруппами белков и приводящих к нарушению функций белков при диабете. AGEs могут образовываться за счет экзогенных факторов (за счет потребления продуктов питания) или формироваться эндогенным путем. Формирование эндогенных AGEs повышается при сахарном диабете, однако они образуются и при более низких показателях глюкозы, т.е. у людей, не страдающих сахарным диабетом и не имеющих метаболических нарушений в организме. На скорость старения данных пациентов оказывают влияние факторы окружающей среды, такие как диета, курение и УФ-излучение. Кроме того, уровень циркулирующих AGEs генетически детерминирован, это доказано при групповом исследовании здоровых монозиготных и гетерозиготных близнецов. Продукты гликирования как биомаркеры старения кожи. Роль гликационного стресса в развитии фотостарения Кожа из-за ее легкой доступности дает ученым прекрасную возможность для неинвазивного исследования процесса гликации путем использования характерных аутофлюоресцентных свойств AGEs [9-11]. Накопление AGEs в коже тщательно изучено и обнаружено не только при диабете, но и при хронологическом старении. Участки кожи, где проходил процесс гликации, демонстрировали явление аутофлюоресценции и имели признаки наибольшего хронологического старения у здоровых людей, не имевших такой патологии, как сахарный диабет. М. Ichihashi и соавт. [9] рассматривают гликационный стресс как фактор, влияющий на возрастные изменения в коже и обусловленный определенными функциональными и структурными перестройками. Фотостарение и гликационный стресс являются основными причинами деструктивных изменений кожного покрова. Процесс гликации происходит в тот момент, когда сахара, такие как глюкоза или фруктоза, вступают с белком в неферментативную реакцию, образуя гликированный белок. Затем образуются конечные продукты гликации (AGEs), которые могут накапливаться в тканях. AGEs могут связываться с рецепторами (RAGE), тем самым вызывая воспалительные изменения в коже и других тканях. Гликационный стресс может быть вызван многими факторами, в том числе воздействием УФ-света, который резко усиливает накопление AGEs. AGEs изменяют коллаген, уменьшают эластичность кожи, способствуя формированию морщин. AGEs накапливаются в коже и могут быть обнаружены с помощью метода аутофлюоресценции (AF). Исследования под руководством проф. Y. Yonei на 136 здоровых японских женщинах, показали, что уровень AF значительно увеличивается с возрастом [9, 11]. Гликационный стресс включает в себя ряд различных химических реакций, например, реакцию Майяра, представляющую собой неферментативную необратимую реакцию сахара и белка. В результате этой реакции может образовываться большое количество конечных продуктов усиленной гликации. Промежуточными продуктами являются основания Шиффа и продукты Амадори. Модифицированные белки, образуя Шиффовы основания (азометины) - N-замещенные имины, органические соединения с общей формулой: R1R2C = NR3, где R3 - алкил или арил, а не Н), в которых азот связан с арильной или алкильной группой, но не с водородом. Шиффовы основания - обратимые соединения, генерируемые в результате взаимодействия сахара, такого как глюкоза, и лизина или аргинина (аминокислоты) или N-концевой аминокислоты в белке. Шиффовы основания формируют более стабильные гликозилированные продукты, называемые продуктами Амадори. Например, соединение гликированного гемоглобина (HbA1c) является необратимым кетоамином, формирующимся в результате гликации гемоглобина. Общая реакция разделена на три части: начальная реакция, образование промежуточных продуктов и расширенная реакция. Промежуточными продуктами являются 3-дезоксиглюкозон, глиоксаль, метилглиоксаль, гликолевый альдегид, глицеральдегид. При увеличении внутриклеточной концентрации глюкозы происходит негативное влияние на митохондрии, проявляющееся избыточным образованием фумаровой кислоты (это химическое соединение с формулой HO2CCH=CHCO2H). Фумаровая кислота является транс-изомером. В свою очередь, фумаровая кислота быстро реагирует с цистеином - аминокислотой в белках, образуя S-(2-сукцинил) цистеина (2SC). Гликационный стресс также включает в себя вторичные, или производные, реакции. Результатом этих реакций являются три основных диабетических осложнения: невропатия, нефропатия и ретинопатия. Эти заболевания характеризуются накоплением AGEs в ткани. Гликационный стресс экстремально возрастает у пациентов с гипергликемией, когда концентрация глюкозы в плазме крови превышает 9 ммоль/л, и также может возрастать в ответ на альдегидное разрушение вследствие чрезмерного потребления алкоголя, гипертриглицеридемии или гиперлипидемии (накопления липопротеинов низкой плотности - ЛПНП) и холистеринемии. Гликация генерирует различные вещества, которые помогают распознать гликационный стресс [10, 11]. Например, HbA1c и гликоальбумин продуцируют продукты Амадори и основания Шиффа, которые используются в качестве маркеров для диабетической оценки. Другие AGEs, используемые в качестве маркеров гликационного стресса, в том числе N(6)-карбоксиметиллизин (CML), пентозидин, пирролин, GA-пиридин, Nε-карбоксиэтил-лизин (CEL), Nω-карбоксиметил-аргинин (СМА) и 2-(2-фуроил)-4(5)-(2-фуранил)-1H-имидазол. Карбоксиметиллизин не является флюоресцентным белком и может наблюдаться у больных диабетом, а также у пациентов с сильным окислительным стрессом. Он образуется в результате окислительного разложения продуктов Амадори или непосредственного добавления глиоксаля к лизину. Карбоксиметиллизин вступает в реакцию с коллагеном. В свою очередь коллаген, измененный под воздействием CML в коже человека, индуцирует апоптоз. CML присутствует в коже, в том числе в эпидермальном слое, в котором метаболизм выше, нежели в более глубоких слоях. CML с помощью флюоресцентных анти-CML-поликлональных антител кролика может быть обнаружен при флюоресцентной микроскопии [12]. Пентозидин также является распространенным поздним продуктом гликации, он обладает флюоресцентными свойствами. В дополнение к нарушению функции клеток с помощью белковых модификаций, AGEs могут также связываться со специфическими рецепторами для поздних продуктов усиленной гликации (RAGE) [10, 13, 14]. Рецептор для AGEs (RAGE) может играть патогенетическую роль, изменяя внутриклеточные сигналы и ответы. Происходит активация клеточных сигналов, генерирующих цитокины при воспалении. Однако множество других рецепторов клеточной поверхности, помимо RAGE, распознают AGEs в качестве лиганда (агента, соединяющегося с рецептором). Одним из таких внутриклеточных показателей передачи сигнала, усиливающего окислительный стресс и активацию транскрипции, является универсальный фактор транскрипции (NF-kB), контролирующий экспрессию генов иммунного ответа, апоптоза и клеточного цикла. Нарушение его регуляции вызывает воспаление, аутоиммунные заболевания, а также развитие вирусных инфекций и рака, который непосредственно влияет на MAP-киназный путь передачи сигнала. Стимулирующий агент активизирует сигнальный путь NF-κB, при этом IkB (ингибиторный белок) фосфорилируется под действием киназы IKK (IkB-киназы), что приводит к деградации IkB под действием 26S протеасомы. При этом NF-kB высвобождается от ингибирующего комплекса, транслоцируется в ядро и активирует транскрипцию контролируемых генов. В эндотелиальных клетках сосудов поздние продукты усиленной гликации (AGEs) стимулируют рецепторно-индуцированный сигнал, который запускает экспрессию гена, в ходе которой наследственная информация от гена преобразуется в функциональный продукт - РНК или белок, а именно в фактор роста эндотелия сосудов - VEGF (vascular endothelial growth factor), являющийся сигнальным белком, вырабатываемым клетками для стимулирования васкулогенеза (образование эмбриональной сосудистой системы) и ангиогенеза (роста новых сосудов в уже существующей сосудистой системе). Хотя RAGE, как правило, связаны с клеточной мембраной, некоторые рецепторы могут быть расположены вне клетки (растворимые RAGE). Растворимый рецептор RAGE может связываться с AGE, действуя в качестве приманки, тем самым ингибируя активацию RAGE на клеточных мембранах. Следовательно, наличие растворимого RAGE может указывать на сопротивление или устойчивость к гликационному стрессу. Накопление поздних продуктов AGEs, таких как CML (карбо-ксиметиллизин), в кожном покрове в значительной степени провоцирует гликационный стресс в коже. Последние исследования показали, что карбонилированный белок, находящийся в наружном слое эпидермиса, меняет оптические характеристики кожных клеток за счет уменьшения их прозрачности и пожелтения кожи. В слое кожи, где клетки быстро обновляются, белок K10 образуется путем дифференцировки кератиноцитов, которые восприимчивы к образованию AGEs [12, 15, 16]. Морщины появляются на лице после 30 лет, в тот момент, когда меняется состав белков, эластиновых волокон, волокон коллагена и фибробластов, генерируемых в дерме, в результате воздействия солнечного излучения. Малая доза солнечного излучения повышает концентрацию металлопротеиназ (внеклеточных цинкзависимых эндопептидаз, способных разрушать все типы белков внеклеточного матрикса), в результате происходит изменение регуляции NF-kB и AP-1 и, как следствие, разрушение коллагена и эластина и уменьшение образования проколлагена типа I [17, 18]. NF-kB активируется УФ-излучением. В цитоплазме клетки NF-kB находится в неактивном состоянии в комплексе с ингибиторным белком IkB. Стимулирующий агент активизирует сигнальный путь NF-κB, при этом IkB фосфорилируется под действием киназы IKK (IkB-киназа), что приводит к деградации IkB в результате действия 26S-протеасомы. В ромбовидной коже шеи антитела к AGEs откладываются в сгустки в средних и верхних слоях дермы. Такие изменения характерны при солнечном эластозе. Глыбы могут быть выявлены при окрашивании эластина с помощью метода Ван Гизона. УФВ-излучение стимулирует производство и выброс воспалительных цитокинов, таких как IL-1α, IL-6, TNFα, из кератиноцитов в эпидермисе. В свою очередь цитокины стимулируют фибробласты в дерме. Увеличивается образование мРНК и синтез матриксных металлопротеиназ ММР-1, ММР-3 или ММР-9 - ферментов, разрушающих коллаген и эластиновые волокна. MMP-1, как известно, расщепляет на части фибриллярный белок, следовательно, играет решающую роль при формировании морщин. Эластаза - это ещё один фермент, быстро гидролизирующий, т.е. разрушающий, эластин. При ингибировании эластазы уменьшается образование УФ-индуцированных морщин у экспериментальных животных. С учетом сигнальных путей MAPK (митоген-активируемой протеинкиназы), т.е. учитывая группы мультифункциональных внутриклеточных сигнальных путей, содержащих одну из митоген-активируемых протеинкиназ и контролирующих транскрипцию генов, метаболизм, пролиферацию и подвижность клеток, а также апоптоз и другие процессы, антиоксиданты могут эффективно предотвращать образование морщин. Антигликационные стратегии для предотвращения старения кожи Поскольку AGEs - важный патогенетический фактор при диабете и старении, разработка стратегий против данных продуктов остается в центре научных интересов [18]. Вещества, способные препятствовать накоплению AGEs, частично изучены. Некоторые из них уже проходят апробацию в клинических испытаниях. Они включают в себя как вещества, ингибирующие образование AGEs, так и вещества, нарушающие структуру AGEs. Немаловажную роль в борьбе с AGEs имеет снижение калорийности потребляемой пищи и увеличение физических нагрузок. У мышей уменьшение калорийности потребляемой пищи увеличивает продолжительность жизни и замедляет течение многих возрастных дисфункций. Аминогуанидин был открыт одним из первых в качестве вещества, ограничивающего образование AGEs [19]. Это соединение не имеет никакого влияния на AGEs на поздних стадиях гликации. Пиридоксамин - еще один инструмент в борьбе с AGEs. Пиридоксамин представляет собой изоформу естественного витамина В6. Это соединение участвует в декарбоксилировании и трансаминировании, тормозит образование продуктов Амадори. В клинических испытаниях пиридоксамин показал многообещающие результаты при диабетической нефропатии. Пероральный прием пиридоксамина привел к мощному ингибированию повреждения коллагена кожи у крыс-диабетиков. Однако его потенциал при старении кожи человека требует глубокого изучения. Установлены химические вещества и ферменты, способные распознавать и разрывать сшивки в реакции Mайяра. Такими химическими «AGE-выключателями» являются диметил-3-фенил-тиазолиновый хлорид (ALT-711), N-фенацилтиазолин и N-фенацил-4,5-диметилтиазолин. Зарегистрированы достаточно перспективные результаты в борьбе с сердечно-сосудистыми осложнениями при старении и сахарном диабете, но их реальная способность расщеплять существующие белковые сшивки в тканях человека остается под вопросом. Фруктозамин-3-киназа (FN3K) является относительно новым ферментом и в настоящее время изучается [20, 21]. Ученые ищут способ компенсации недостатка FN3K. После 7 лет исследований в лабораториях “Chanel” найдено вещество, стимулирующее выработку этого энзима. «Активный ингредиент из листьев сурианы приморской позволяет оптимизировать реакции дегликации коллагена, т.е. в буквальном смысле сохранить упругость и эластичность кожи», - объяснила глава лаборатории Кристель Лассер. Издавна отваром из этих листьев местные жители Индонезии лечили сахарный диабет, а теперь этот уникальный инградиент стал ключевым для создания антивозрастных средств [20]. Питание является важным фактором при старении кожи. Диетическое уменьшение калорийности играет большую роль в профилактике накопления AGEs в организме человека. Диетические ограничения могут существенно снизить содержание AGEs у крыс и мышей в коллагене кожи. Соблюдение диеты представляет собой не всегда выполнимое требование для пациента, однако ограничение потребления «глюкозотоксинов» и улучшение качества потребляемой пищи является более реалистичной и выполнимой задачей. «Глюкозотоксины», поступающие в организм с пищей, значительно увеличивают концентрацию системных медиаторов воспаления: IL-6 и С-реактивного белка, т.е. имеют диабетогенный, нефротоксичный и атерогенный эффект [22-24]. К сожалению, нет достоверных клинических исследований, доказывающих влияние диетических ограничений на старение кожи человека. Питание может влиять на процесс старения путем изменения экспрессии гена. Точный механизм влияния ограничения калорийности на процесс старения по-прежнему является предметом исследований. Возможно, происходит снижение регуляции передачи сигналов mTOR (mammalian target of rapamycin) и повышение регуляции экспрессии гена СИР-1. Внутриклеточный протеин mTOR является сигнальным элементом, регулирующим развитие и гипертрофию мышечных волокон. Эти методы лечения представляют собой применение таких веществ, как ингибиторы AGEs, - веществ, разрушающих AGEs, которые увеличивают обмен веществ AGEs и антагонистов AGE-рецепторов. Одним из таких ингибиторов AGEs является аминогуанидин, но применение этого препарата влечет высокую частоту побочных эффектов. Смесь растительных экстрактов ромашки, боярышника, хауттюйнии сердцелистной и листьев винограда является весьма эффективной для ингибирования образования AGEs in vitro, у экспериментальных животных, а также в клинических исследованиях. Экстракты розмарина, расторопшы, шалфея, майорана, имбиря, душистого перца, корицы, зеленого чая, куркумы, граната, яблока, черники и бурых водорослей являются ингибиторами AGEs при местном применении на коже человека [24, 25]. В сравнительном исследовании протестированы экстракты 24 трав и специй в связи с их способностью ингибировать гликацию альбумина in vitro. В результате экстракты специй зарекомендовали себя как более сильные ингибиторы гликозилирования, чем растительные экстракты. Экстракты имбиря, корицы, душистого перца и гвоздики являются мощным оружием в борьбе с гликацией. Экстракты шалфея, майорана и розмарина также эффективны, но в меньшей степени. Экстракт розмарина обладает мощными антиоксидантными и бактерицидными свойствами, он подавляет УФ-индуцированные металлопротеиназы. Спиртовой экстракт из листьев розмарина ингибирует окислительные изменения в поверхностном слое кожи и защищает кожу от повреждения свободными радикалами. Исследования показали, что куркумин обладает противовоспалительными свойствами, является мощным антиоксидантом и препятствует выработке конечных продуктов глубокого гликирования. При местном применении геля с куркумином на фотоповрежденной коже в течение 3-6 мес произошло клиническое улучшение многих параметров фотостарения: уменьшение кератоза, осветление лентигинозных пятен, улучшение текстуры кожи и уменьшение мелких морщин [26]. Другим важным ингибитором гликации является α-липоевая кислота (ALA), которая является естественным антиоксидантом. В рандомизированном плацебо-контролируемом двойном слепом исследовании с участием 33 женщин, которые использовали в течение 12 нед 5% крем с ALA на одной половине лица и 0,3% кофермент Q10 с 0,03% ацетил-L-карнитином на другой стороне лица, выявилось статистически значимое уменьшение периорбитальных морщин на стороне, где использовали крем с ALA. Карнозин (β-аланил-L-гистидин) - дипептид, состоящий из остатков аминокислот β-аланина и гистидина. Обнаружен в высоких концентрациях в мышцах и тканях мозга. Исследования показали, что карнозин имеет свойства антиоксиданта. Доказана активность карнозина в удалении активных форм кислорода, а также αβ-ненасыщенных альдегидов, образующихся из суперокисленых жирных кислот клеточных мембран в процессе окислительного стресса. Он является ингибитором гликации. В результате исследований установлено, что пероральный прием пищевых добавок с карнозином может улучшить внешний вид кожи, включая уменьшение мелких морщин [26]. Астрагалозид, выделенный из корня астрагала, значительно подавляет генерацию карбоксиметиллизина (CML), образующегося в процессе реакции Майяра и являющегося самым распространенным поздним продуктом гликации, а также пентозидина, флюоресцентного продукта гликации. К веществам, приводящим к нарушению образования AGEs, относятся производные тиазола, такие как N-фенацилтиазолин (фенилтиазолий) и N-фенацил-4,5-диметилтиазолин. Таким образом, существует достаточно доказательств того, что AGEs играют важную роль в процессе старения кожи. Процесс гликации наблюдается при старении кожи и сопровождается сшиванием волокон коллагена и эластина, что приводит к потере эластичности кожи и способствует старению. Процесс осаждения в тканях гликозилированного коллагена и эластина необратим, поэтому профилактика гликации, включающая в себя снижение потребления сахаров и жесткий контроль гликемии, является лучшей стратегией. Внешние факторы, такие как пребывание на солнце, ускоряют осаждение AGEs в тканях, следовательно, ограничение чрезмерного воздействия солнечного излучения на кожу является также профилактикой старения. Есть многочисленные исследования веществ, уменьшающих чрезмерное накопление AGEs в тканях [24-27]. Некоторые из этих исследований уже показали положительный эффект в терапии диабетических осложнений, однако четких клинических исследований этих анти-AGEs-стратегий в борьбе со старением кожи человека пока нет, поэтому перед нами огромное поле деятельности для будущих научных открытий.
×

About the authors

Ada A. Vavilova

Institute of Medical and Social Technologies of the Moscow State University of Food Production

Email: ada_vavilova7@mail.ru
postgraduate at the Department of skin and venereal diseases with the course of cosmetology of the Institute of Medical and Social Technologies of the Moscow State University of Food Production, Moscow, 125080, Russian Federation Moscow, 125080, Russian Federation

E. I Gubanova

Institute of Medical and Social Technologies of the Moscow State University of Food Production

Moscow, 125080, Russian Federation

V. V Gladko

Institute of Medical and Social Technologies of the Moscow State University of Food Production

Moscow, 125080, Russian Federation

References

  1. Ichihashi M., Ueda M., Budiyanto A., Bito T., Oka M., Fukunaga M., Tsuru K., Horikawa T. UV-induced skin damage. Toxicology. 2003; 189(1-2): 21-39. Available at: https://www.ncbi.nlm.nih.gov/pubmed/12821280
  2. Zouboulis C.C., Makrantonaki E. Clinical aspects and molecular diagnostics of skin aging. Clin. Dermatol. 2011; 29(1): 3-14. doi: 10.1016/j.clindermatol.2010.07.001.
  3. Gkogkolou P., Bohm M. Advanced glycation end products. Key players in skin aging? Dermatoendocrinol. 2012; 4(3): 259-70.
  4. Ohshima H., Oyobikawa M., Tada A. Melanin and facial skin fluorescence as markers of yellowish discoloration with aging. Skin Res. Technol. 2009; 15(4): 496-502.
  5. Олисова О.Ю., Андреева Е.В. Еще раз о проблеме гиперпигментации. Российский журнал кожных и венерических болезней. 2014; 17(2): 20-4.
  6. Круглова Л.С., Иконникова Е.В. Гиперпигментация кожи: современные взгляды на этиологию и патогенез (часть 1). Российский журнал кожных и венерических болезней. 2017; 20(3): 178-83.
  7. Monnier V.M. Intervention against the Maillard reaction in vivo. Arch. Biochem. Biophys. 2003; 419(1): 1-15.
  8. Ott C., Jacobs K., Haucke E., Navarrete Santos A., Grune T., Simm A. Role of advanced glycation end products in cellular signaling. Redox Biol. 2014; 2(1): 411-29. DOI: 1016/j.redox.2013.12.016.
  9. Ichihashi М., Yagi М., Nomoto K., Yonei Y. Glycation stress and photo-aging in skin. J. Anti-Aging Med. 2011; 8(3): 23-9. Available at: http://www.anti-aging.gr.jp/english/pdf/2011/8%283%292329en.pdf
  10. Loughlin D.T., Artlett C.M. Precursor of advanced glycation end products mediates ER-stress-induced caspase-3 activation of human dermal fibroblasts through NAD(P) H oxidase 4. PLoS One. 2010; 5(6): e11093.
  11. Corstjens H., Dicanio D., Muizzuddin N., Neven A., Sparacio R., Declercq L., et al. Glycation associated skin autofluorescence and skin elasticity are related to chronological age and body mass index of healthy subjects. Exp. Gerontol. 2008; 43(7): 663-7. doi: 10.1016/j.exger.2008.01.012.
  12. Kawabata K., Yoshikawa H., Saruwatari K., Akazawa Y., Inoue T., Kuze T., et al. The presence of N(ε)-(Carboxymethyl) lysine in the human epidermis. Biochim. Biophys. Acta. 2011; 1814(10): 1246-52. doi: 10.1016/j.bbapap.2011.06.006.
  13. Fleming T.H., Humpert P.M., Nawroth P.P., Bierhaus A. Reactive metabolites and AGE/RAGE-mediated cellular dysfunction affect the aging process: a mini-review. Gerontology. 2011; 57(5): 435-43. doi: 10.1159/000322087.
  14. Ramasamy R., Yan S.F., Schmidt A.M. RAGE: therapeutic target and biomarker of the inflammatory response-the evidence mounts. J. Leukoc. Biol. 2009; 86(3): 505-12. doi: 10.1189/jlb.0409230.
  15. Fan X., Sell D.R., Zhang J., Nemet I., Theves M., Lu J., et al. Anaerobic vs aerobic pathways of carbonyl and oxidant stress in human lens and skin during aging and in diabetes: A comparative analysis. Free Radic. Biol. Med. 2010; 49(5): 847-56. doi: 10.1016/j.freeradbiomed.2010.06.003.
  16. Nagai R., Fujiwara Y., Mera K., Yamagata K., Sakashita N., Takeya M. Immunochemical detection of Nepsilon-(carboxyethyl)lysine using a specific antibody. J. Immunol. Methods. 2008; 332(1-2): 112-20. doi: 10.1016/j.jim.2007.12.020.
  17. Xue M., Rabbani N., Thornalley P.J. Glyoxalase in ageing. Semin. Cell. Dev. Biol. 2011; 22(3): 293-301. doi: 10.1016/j.semcdb.2011.02.013.
  18. Ichihashi M., Ando H. The maximal cumulative solar UVB dose allowed to maintain healthy and young skin and prevent premature photoaging. Exp. Dermatol. 2014; 23(Suppl. 1): 43-6. doi: 10.1111/exd.12393.
  19. Van Schaftingen E., Collard F., Wiame E., Veiga-da-Cunha M. Enzymatic repair of Amadori products. Amino Acids. 2012; 42(4): 1143-50. doi: 10.1007/s00726-010-0780-3.
  20. Farris P.K. Innovative cosmeceuticals: sirtuin activators and anti-glycation compounds. Semin. Cutan. Med. Surg. 2011; 30(3): 163-6. doi: 10.1016/j.sder.2011.05.004.
  21. Wu X., Monnier V.M. Enzymatic deglycation of proteins. Arch. Biochem. Biophys. 2003; 419(1): 16-24.
  22. Hori M., Kishimoto S., Tezuka Y., Nishigori H., Nomoto K., Hamada U., Yonei Y. Double-blind study on effects of glucosyl ceramide in beet extract on skin elasticity and fibronectin production in human dermal fibroblasts. J. Anti-Aging Med. 2010; 7(11): 129-42. Available at: http://www.anti-aging.gr.jp/english/pdf/2010/7(11)129-142.pdf
  23. Yonei Y., Yagi M., Hibino S., Matsuura N. Herbal extracts inhibit Maillard reaction, and reduce chronic diabetic complications risk in streptozotocin-induced diabetic rats. J. Anti-Aging Med. 2008; 5(10): 93-8. Available at: http://www.anti-aging.gr.jp/english/pdf/2008/5(10)93-98.pdf
  24. Yonei Y., Miyazaki R., Takahashi Y., Takahashi H., Nomoto K., Yagi M., et al. Anti-glycation effect of mixed herbal extract in individuals with pre-diabetes mellitus: a double-blind, placebo-controlled, parallel group study. J. Anti-Aging Med. 2010; 7(5): 26-35.
  25. Gkogkolou P., Bohm M. Advanced glycation end products: Key players in skin aging? Dermatoendocrinol. 2012; 4(3): 259-70. doi: 10.4161/derm.22028.
  26. Анисимов В.Н. Молекулярные и физиологические механизмы старения. СПб.: Наука; 2008.
  27. Емельянов В. В., Максимова Н. Е., Мочульская Н. Н., Черешнев В. А. Неферментативное гликозилирование белков: химия, патофизиология, перспективы коррекции. Вопросы биологической, медицинской и фармацевтической химии. 2010; 1: 3-15.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86501 от 11.12.2023 г
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80653 от 15.03.2021 г
.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies