Role of Vimentin in Injuries of the Central Nervous System

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A special place in neurobiology is occupied by the study of glial activity during the development of central nervous system pathology. Debates about the dangers or benefits of glia have been ongoing, as well as the searching for ways to pharmacologically correct the glial activation pathways. It is steel remains unclear whether we should to completely disable glia from the regeneration process, or vice versa, activation of some glial functions is necessary. Vimentin, one of the structural components of the cytoskeleton, has been shown to reveal a dual functionality. Some studies demonstrates that, as a structural component of the glial scar, vimentin enhances the consolidation of the damaged area, preventing the axonal growth and the motor function restoration. Other researches, on the contrary, present vimentin as a secreted protein that has the abilities to attract the nerve fibers and promote the regeneration of damaged axons. To date the vimentin role in central nervous system (CNS) injuries has been described very poorly and the conclusions drawn are extremely contradictory. The purpose of this review is an attempt to summarize the recent studies results about the role of vimentin in modeling CNS damage.

Texto integral

Acesso é fechado

Sobre autores

I. Manzhulo

A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, RAS

Autor responsável pela correspondência
Email: i-manzhulo@bk.ru
Rússia, Vladivostok

O. Manzhulo

A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, RAS

Email: i-manzhulo@bk.ru
Rússia, Vladivostok

A. Ponomarenko

A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, RAS

Email: i-manzhulo@bk.ru
Rússia, Vladivostok

Bibliografia

  1. Helfand B.T., Mendez M.G., Murthy S.N., Shumaker D.K., Grin B., Mahammad S., Aebi U., Wedig T., Wu Y.I., Hahn K.M., Inagaki M., Herrmann H., Goldman R.D. // Mol. Biol. Cell. 2011. V. 22. P. 1274–1289.
  2. Potokar M., Morita M., Wiche G., Jorgacevski J. // Cells. 2020. V. 9. P. 1604.
  3. Lin J., Cai W. // J. Neurotrauma. 2004. V. 21. P. 1671–1682.
  4. Eliasson C., Sahlgren C., Berthold C.H., Stakeberg J., Celis J.E., Betsholtz C., Eriksson J.E., Pekny M. // J. Biol. Chem. 1999. V. 274. P. 23996–24006.
  5. Eriksson J.E., Opal P., Goldman R.D. // Curr. Opin. Cell Biol. 1992. V.4. P. 99–104.
  6. Potokar M., Kreft M., Li L., Andersson J.D., Pangrsic T., Chowdhury H.H., Pekny M., Zorec R. // Traffic. 2007. V. 8. P. 12–20.
  7. De Pascalis C., Pérez-González C., Seetharaman S., Boëda B., Vianay B., Burute M., Leduc C., Borghi N., Trepat X., Etienne-Manneville S. // J. Cell Biol. 2018. V. 217. P. 3031–3044.
  8. De Pablo Y., Marasek P., Pozo-Rodrigálvarez A., Wilhelmsson U., Inagaki M., Pekna M., Pekny M. // Cells. 2019. V. 8. P. 1016.
  9. Eckes B., Dogic D., Colucci-guyon E., Wang N., Maniotis A., Ingber D., Merckling A., Langa F., Aumailley M., Delouvée A., Koteliansky V., Babinet C., Krieg T. // J. Cell Sci. 1998. V. 111. P. 1897–1907.
  10. Pekny M., Wilhelmsson U., Bogestål Y.R., Pekna M. // Int. Rev. Neurobiol. 2007. V. 82. P. 95–111.
  11. Ekmark-Lewén S., Lewén A., Israelsson C., Li G.L., Farooque M., Olsson Y., Ebendal T., Hillered L. // Restor. Neurol. Neurosci. 2010. V. 28. P. 311–321.
  12. Vinci L., Ravarino A., Fanos V., Naccarato A.G., Senes G., Gerosa C., Bevilacqua G., Faa G., Ambu R. // Eur. J. Histochem. 2016. V. 60. P. 2563.
  13. Dahl D. // J. Neurosci. Res. 1981. V. 6. P. 741–748.
  14. Gimenez y Ribotta M., Langa F., Menet V., Privat A. // Glia. 2000. V. 31. P. 69–83.
  15. Manzhulo I., Tyrtyshnaia A., Kipryushina Y., Dyuizen I., Ermolenko E., Manzhulo O. // Neurosci. Lett. 2018. V. 672. P. 6–14.
  16. Anderson M.A., Burda J.E., Ren Y., Ao Y., O’Shea T.M., Kawaguchi R., Coppola G., Khakh B.S., Deming T.J., Sofroniew M.V. // Nature. 2016. V. 532. P. 195–200.
  17. McLean W.H., Lane E.B. // Curr. Opin. Cell. Biol. 1995. V. 7. P. 118–125.
  18. Liedtke W., Edelmann W., Bieri P.L., Chiu F.C., Cowan N.J., Kucherlapati R., Raine C.S. // Neuron. 1996. V. 17. P. 607–615.
  19. Colucci-Guyon E., Portier M.M., Dunia I., Paulin D., Pournin S., Babinet C. // Cell. 1994. V. 79. P. 679–694.
  20. Wang X., Messing A., David S. // Exp. Neurol. 1997. V. 148. P. 568–576.
  21. Pekny M., Johansson C.B., Eliasson C., Stakeberg J., Wallén A., Perlmann T., Lendahl U., Betsholtz C., Berthold C.H., Friséne J. // J. Cell. Biol. 1999. V. 145. P. 503–514.
  22. Menet V., Gime´nez y Ribotta M., Chauvet N., Drian M.J., Lannoy J., Colucci-Guyon E., Privat A. // J. Neurosci. 2001. V. 21. P. 6147–6158.
  23. Saunders N.R., Deal A., Knott G.W., Varga Z.M., Nicholls J.G. // Clin. Exp. Pharmacol. Physiol. 1995. V. 22. P. 518–526.
  24. Barrett C.P., Donati E.J., Guth L. // Exp. Neurol. 1984. V. 84. P. 374–385.
  25. Davies J.A., Goucher D.R., Doller C., Silver J. // J. Neurosci. 1999. V. 19. P. 5810–5822.
  26. Bradbury E.J., Moon L.D., Popat R.J., King V.R., Bennett G.S., Patel P.N., Fawcett J.W., McMahon S.B. // Nature. 2002. V. 416. P. 636–640.
  27. Menet V., Prieto M., Privat A., Gimenez y Ribotta M. // Proc. Natl. Acad. Sci. USA. 2003. V. 100. P. 8999–9004.
  28. Bareyre F.M., Handenschild B., Schwab M.E. // J. Neurosci. 2002. V. 22. P. 7097–7110.
  29. Schwab M.E. // Prog. Brain Res. 2002. V. 137. P. 351–359.
  30. Silver J., Miller J.H. // Nat. Rev. Neurosci. 2004. V. 5. P. 146–156.
  31. Liddelow S.A., Barres B.A. // Nature. 2016. V. 532. P. 182–183.
  32. Yiu G., He Z. // Nat. Rev. Neurosci. 2006. V. 7. P. 617–627.
  33. Rolls A., Shechter R., Schwartz M. // Nat. Rev. Neurosci. 2009. V. 10. P. 235–241.
  34. White R.E., Rao M., Gensel J.C., McTigue D.M., Kaspar B.K., Jakeman L.B. // J. Neurosci. 2011. V. 31. P. 15173–15187.
  35. Bareyre F.M., Schwab M.E. // Trends. Neurosci. 2003. V. 26. P. 555–563.
  36. Teshigawara K., Kuboyama T., Shigyo M., Nagata A., Sugimoto K., Matsuya Y., Tohda C. // Br. J. Pharmacol. 2013. V. 168. P. 903–919.
  37. Hsu J.Y., Xu X.M. // J. Neurosci. Res. 2005. V. 82. P. 472–483.
  38. Busch S.A., Horn K.P., Cuascut F.X., Hawthorne A.L., Bai L., Miller R.H., Silver J. // J. Neurosci. 2010. V. 30. P. 255–265.
  39. Johansson C.B., Momma S., Clarke D.L., Risling M., Lendahl U., Frisén J. // Cell. 1999. V. 96. P. 25–34.
  40. Terzi F., Henrion D., Colucci-Guyon E., Federici P., Babinet C., Levy B.I., Briand P., Friedlander G. // J. Clin. Invest. 1997. V. 100. P. 1520–1528.
  41. Ivaska J., Pallari H.M., Nevo J., Eriksson J.E. // Exp. Cell. Res. 2007. V. 313. P. 2050–2062.
  42. Tsuruta D., Jones J.C. // J. Cell. Sci. 2003. V. 116. P. 4977–4984.
  43. Wang K., Bekar L.K., Furber K., Walz W. // Brain Res. 2004. V. 1024. P. 193–202.
  44. Joosten E.A., Gribnau A.A. // Neurosci. 1989. V. 31. P. 439–452.
  45. Mor-Vaknin N., Punturieri A., Sitwala K., Markovitz D.M. // Nat. Cell. Biol. 2003. V.5. P. 59–63.
  46. Xu B., deWaal R.M., Mor-Vaknin N., Hibbard C., Markovitz D.M., Kahn M.L. // Mol. Cell. Biol. 2004. V. 24. 9198–9206.
  47. Cordero-Llana O., Scott S.A., Maslen S.L., Anderson J.M., Boyle J., Chowhdury R.R., Tyers P., Barker R.A., Kelly C.M., Rosser A.E, Stephens E., Chandran S., Caldwell M.A. // Cell. Death. Differ. 2011. V. 18. P. 907–913.
  48. Greco T.M., Seeholzer S.H., Mak A., Spruce L., Ischiropoulos H. // J. Proteome. Res. 2010. V. 9. P. 2764–2774.
  49. Dubey M., Hoda S., Chan W.K.-H., Pimenta A., Ortiz D.D., Shea T.B. // J. Neurosci. Res. 2004. V. 78. P. 245–249.
  50. Shigyo M., Tohda C. // Sci. Rep. 2016. V. 6. P. 28293.
  51. Han Q., Cao C., Ding Y., So K.F., Wu W., Qu Y., Zhou L. // Exp. Neurol. 2015. V. 267. P. 194–208.
  52. Camand E., Morel M.P., Faissner A., Sotelo C., Dusart I. // Eur. J. Neurosci. 2004. V. 20. P. 1161–1176.
  53. Jacobs B.L., Martin-Cora F.J., Fornal C.A. // Brain Res. Rev. 2002. V. 40. P. 45–52.
  54. Ruschel J., Hellal F., Flynn K.C., Dupraz S., Elliott D.A., Tedeschi A., Bates M., Sliwinski C., Brook G., Dobrindt K., Peitz M., Brüstle O., Norenberg M.D., Blesch A., Weidner N., Bunge M.B., Bixby J.L., Bradke F. // Science. 2015. V. 348. P. 347–352.
  55. Shigyo M., Kuboyama T., Sawai Y., Tada-Umezaki M., Tohda C. // Sci. Rep. 2015. V. 5. P. 12055.
  56. Walter H.J., Berry M., Hill D.J., Logan A. // Endocrinology. 1997. V. 138. P. 3024–3034.
  57. Fernandez A.M., Torres-Aleman I. // Nat. Rev. Neurosci. 2012. V.13. P. 225–239.
  58. Liu J.P., Baker J., Perkins A.S., Robertson E.J., Efstratiadis A. // Cell. 1993. V. 75. P. 59–72.
  59. Broughton K.S., Wade J.W. // J. Nutr. 2002. V. 132. P. 88–94.
  60. Jump D.B. // Curr. Opin. Lipidol. 2002. V. 13. P. 155–164.
  61. Zhang X., Wang X., Liu T., Mo M., Ao L., Liu J. // PPAR Res. 2015. P. 489314.
  62. Fuchs E., Cleveland D.W. // Science. 1998. V. 279. P. 514–519.
  63. Gomi H., Yokoyama T., Fujimoto K., Ikeda T., Katoh A., Itoh T., Itohara S. // Neuron. 1995. V. 14. P. 29–41.
  64. Pekny M., Leveen P., Pekna M., Eliasson C., Berthold C.H., Westermark B., Betsholtz C. // EMBO J. 1995. V.14. P. 1590–1598.
  65. Wilhelmsson U., Li L., Pekna M., Berthold C.H., Blom S., Eliasson C., Renner O., Bushong E., Ellisman M., Morgan T.E., Pekny M. // J. Neurosci. 2004. V. 24. P. 5016–5021.
  66. Tyrtyshnaia A., Manzhulo O., Manzhulo I. // Int. J. Mol. Sci. 2023. V. 24. P. 10014–10043.
  67. Pekny M., Pekna M. // Physiol. Rev. 2014. V. 94. P. 1077–1098.
  68. Liu Z., Li Y., Cui Y., Roberts C., Lu M., Wilhelmsson U., Pekny M., Chopp M. // Glia. 2014. V. 62. P. 2022–2033.
  69. Potokar M., Stenovec M., Jorgačevski J., Holen T., Kreft M., Ottersen O.P., Zorec R. // Glia. 2013. V. 61. P. 917–928.
  70. Vizuete M.L., Venero J.L., Vargas C., Ilundáin A.A., Echevarría M., Machado A., Cano J. // Neurobiol. Dis. 1999. V. 6. P. 245–258.
  71. Jiang S.X., Slinn J., Aylsworth A., Hou S.T. // J. Neurochem. 2021. V. 158. P. 571–572.
  72. Pekny M. // Prog. Brain Res. 2001. V. 132. P. 23–30.
  73. Pekny M., Pekna M. // J. Pathol. 2004. V. 204. P. 428–437.
  74. Pekny M., Nilsson M. // Glia. 2005. V. 50. P. 427–434.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Localization of GFAP- and vimentin-positive astrocytes in the glial scar surrounding the injury site on day 7 after spinal cord injury [15]. Scale bar is 50 µm.

Baixar (1MB)
3. Fig. 2. The role of vimentin in glial scar formation. Created with BioRender.com.

Baixar (421KB)
4. Fig. 3. Distribution of GFAP- and vimentin-positive astrocytes in the brain 1–56 days after traumatic injury of the cerebral cortex (a) [66]. Scale bar – 50 μm. Staining area of ​​(b) GFAP- and (c) vimentin-positive astrocytes in the brain after injury, mean ± SEM, n = 5 (number of animals/group), * p < 0.05, (Mann–Whitney test).

Baixar (643KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025