Синтез и исследование электротранспортных свойств поливольфраматов РЗЭ M10W22O81 (M–La, Nd)

Обложка

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Твердофазным методом синтезированы поливольфраматы РЗЭ M10W22O81 (M–La, Nd, Ce) и исследованы их электропроводящие и термические свойства. Электропроводность измерена методом электрохимического импеданса в зависимости от температуры и давления кислорода в газовой фазе. Совокупностью трех методов (электропроводность от давления кислорода, числа переноса методом ЭДС и метод Тубандта) установлено, что исследуемые поливольфраматы являются кислородно-ионными проводниками.

Полный текст

Доступ закрыт

Об авторах

Н. Н. Пестерева

Уральский федеральный университет им. первого Президента России Б.Н. Ельцина

Автор, ответственный за переписку.
Email: Natalie.Pestereva@urfu.ru
Россия, Екатеринбург

А. Ф. Гусева

Уральский федеральный университет им. первого Президента России Б.Н. Ельцина

Email: Natalie.Pestereva@urfu.ru
Россия, Екатеринбург

А. А. Тушкова

Уральский федеральный университет им. первого Президента России Б.Н. Ельцина

Email: Natalie.Pestereva@urfu.ru
Россия, Екатеринбург

Список литературы

  1. Naveen Kumar, K., Vijayalakshmi, L., Hyeongyu, Bae, Kang, Taek Lee, Pyung, Hwang, and Jungwook, Choi, Optimization of sensitizer concentration for upconversion photoluminescence of Yb3+/Er3+: La10W22O81 nanophosphor rods, Ceram. Intern., 2021, vol. 47, p. 4563. https://doi.org/10.1016/j.ceramint.2020.10.021
  2. Kaczmarek, A.M., Ndagsi, D., Van Driessche, I., Van Hecke, K., and Van Deun, R., Green and blue emitting 3D structured Tb: Ce2(WO4)3 and Tb: Ce10W22O81 micromaterials, Dalton Transactions, 2015, vol. 44(22), p. 10237. https://doi.org/10.1039/c5dt00764j
  3. Naveen Kumar, K., Vijayalakshmi, L., Jiseok, Lim, and Jungwook, Choi, Non-cytotoxic Dy3+ activated La10W22O81 nanophosphors for UV based cool white LEDs and anticancer applications, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, vol. 278, 121309. https://doi.org/10.1016/j.saa.2022.121309
  4. Naveen Kumar, K., Vijayalakshmi, L., Pyung, Hwang, Ashish, D., Wadhwani, and Jungwook, Choi, Bright red-luminescence of Eu3+ ion-activated La10W22O81 microphosphors for noncytotoxic latent fingerprint imaging, J. Alloys and Compounds, 2020, vol. 840, 155589. https://doi.org/10.1016/j.jallcom.2020.155589
  5. Naveen Kumar, K., Vijayalakshmi, L., Gayeon, Lee, Gumin, Kang, Jiseok, Lim, and Jungwook, Choi, Robust color purity of reddish-orange emission from Sm3+-activated La10W22O81 biocompatible microphosphors for solid state lighting and anticancer applications, J. Rare Earths, 2023, vol. 41, p. 1850. https://doi.org/10.1016/j.jre.2022.09.013
  6. Pestereva, N., Guseva, А., Vyatkin, I., and Lopatin, D., Electrotransport in tungstates Ln2(WO4)3 (Ln = La, Sm, Eu, Gd), Solid State Ionics, 2017, vol. 301, p. 72. https://doi.org/ 10.1016/j.ssi.2017.01.009
  7. Пестерева, Н. Н., Вяткин, И. А., Лопатин, Д. А., Гусева, А.Ф. Природа ионной проводимости в вольфраматах лантанидов со структурой “дефектного шеелита”, Электрохимия. 2016. Т. 52. С. 1213. https://doi.org/10.7868/S0424857016110098 [Pestereva, N.N. Vyatkin, I.A. Lopatin, D.A., and Guseva, A.F., Nature of ionic conductivity of lanthanide tungstates with imperfect scheelite structure, Russ. J. Electrochem, 2016, vol. 52, p. 1082.] https://doi.org/10.1134/S1023193516110094
  8. Imanaka, N. and Tamura, S., Development of Multivalent Ion Conducting Solid Electrolytes, Bull. Chem. Soc. Japan, 2011, vol. 84 (4), p. 353. https://doi.org/10.1246/bcsj.20100178
  9. Köhler, J., Imanaka, N., and Adachi, G., New cation conducting solid electrolytes with the Sc2(WO4)3 type structure, Materials Science Forum, 1999, vol. 315–317, p. 537. https://doi.org/10.4028/www.scientific.net/msf.315-317.537
  10. Shlyakhtina, A.V., Baldin, E.D., Vorobieva, G.A., Kolbanev, I.V., Stolbov, D.N., Kasyanova, A.V., and Lyskov, N.V., Proton/oxygen ion conductivity ratio of Nd containing La10W2O21/ɤ-La6W2O15 tungstates, Solid State Ionics, 2023, vol. 48, p. 22671. https://doi.org/10.1016/j.ijhydene.2023.03.259
  11. Marie-Hélène, Chambrier, Armel, Le Bail, Fabien, Giovannelli, Abdelkrim, Redjaïmia, and Pierre, Florian, La10W2O21: An anion-deficient fluorite-related superstructure with oxide ion conduction, Inorg. Chem., 2014, vol. 53, p. 147. https://doi.org/10.1021/ic401801u
  12. Guseva, A., Pestereva, N., and Uvarov, N., New oxygen ion conducting composite solid electrolytes Sm2(WO4)3 – WO3, Solid State Ionics, 2023, vol. 394, 116196. https://doi.org/10.1016/j.ssi.2023.116196
  13. Guseva, A.F., Pestereva, N.N., Vostrotina, E.L., Otcheskikh, D.D., and Lopatin, D.A., Ionic conductivity of solid solutions and composites based on Sm2W3O12, Russ. J. Electrochem., 2020, vol. 56(5), p. 447. https://doi.org/10.1134/s1023193520050031
  14. Григорьева, Л.Ф. Диаграммы состояния систем тугоплавких оксидов: Справочник. Вып. № 5. Двойные системы. Ч. 4. Л.: Наука, 1988. 348 с. [Grigorieva, L.F., Phase diagrams of refractory oxide systems: Handbook. Issue No. 5. Binary systems. Part 4. L.: Nauka, 1988. 348 p.]
  15. Евдокимов, А.А., Ефремов, В.А., Трунов, В.К. и др. Соединения редкоземельных элементов. Молибдаты, вольфраматы. Институт общей и неорганической химии им. Н.С. Курнакова (Москва). М.: Наука, 1991. 267 с. [Evdokimov, A.A., Efremov, V.A., Trunov, V.K., et al. Compounds of rare earth elements. Molybdates, tungstates. N.S. Kurnakov Institute of General and Inorganic Chemistry (in Russian). Moscow: Nauka, 1991. p. 267.]
  16. Ефремов, В.А. Особенности кристаллохимии молибдатов и вольфраматов РЗЭ. Успехи химии. 1990. Т. 59. Вып. 7. С. 1085. [Efremov, V.A., Features of crystal chemistry of molybdates and tungstates of rare earth elements, Uspekhi Chemii, 1990, vol. 59, issue 7, p. 1085.]
  17. Yoshimura, M., Morikawa, H., and Miyake, M., Preparation and cell parameters of new rare-earth tungstates R10W22O81 (R = La, Ce, Pr and Nd), Mat. Res. Bull., 1975, vol. 10, p. 1221.
  18. Barker, R. S. and Radosavljevic, I., Structural characterization of RE10W22O81 rare-earth tungstates (RE = Ce, Nd), Acta Cryst., 2008, vol. 64, p. 708. https://doi.org/10.1107/S0108768108033430
  19. Grenthe, C., Guagliardi, A.A., Sundberg, M., and Werner, P.-E., Structure of Nd10W22O81 from high-resolution electron microscopy and X-ray powder diffraction, Acta Cryst., 2001, vol. B57, p. 13. https://doi.org/10.1107/S0108768100013203
  20. Patout, L., Jacob, D., Madjid, Arab, Carlson, Pereira de Souza, and Christine, Leroux, Monoclinic superstructure in the orthorhombic Ce10W22O81 from transmission electron microscopy, Acta crystallographica Section B: Structural crystallography and crystal chemistry, 2014, vol. 70, p. 268. https://doi.org/10.1107/S2052520613034252
  21. Patout, L., Hallaoui, A., Neisius, T., Campos, A.P.C., Dominici, C., Alfonso, C., and Charai, A., Origin of the superstructure elucidated by atomic resolution HAADF-STEM and HREM in the Ce10W22O81 lanthanide tungstate phase, J. Appl. Cryst., 2018, vol. 51, p. 344. https://doi.org/10.1107/S1600576718001103
  22. Loïc, Patout, Abdelali, Hallaoui, Aziz, Taoufyq, Christian, Dominici, Andrea, Porto, Carreiro, Campos, Claude, Alfonso, and Ahmed, Charai, Superstructures In The Scheelite-Type Rare Earth Doped Tungstate Phases. Materials Science. Structural materials, defects and phase transformations, Europ. Microscopy Congress, 2016. https://onlinelibrary.wiley.com/doi/book/10.1002/9783527808465 https://doi.org/10.1002/9783527808465.EMC2016.5182
  23. Гусева, А.Ф., Пестерева, Н.Н. Синтез и электрические свойства композитов Nd2(WO4)3–SiO2. Журн. неорган. химии. 2023. Т. 68. С. 426. [Guseva, A.F. and Pestereva, N.N., Synthesis and electrical properties of Nd2(WO4)3–SiO2 composites, Russ. J. Inorg. Chem., 2023, vol. 68, p. 363.] https://doi.org/10.31857/S0044457X2260164X

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Данные рентгенофазового анализа La10W22O81 (а) и Nd10W22O81 (б).

Скачать (279KB)
3. Рис. 2. Результаты ТГ-ДСК: La10W22O81 (а), Nd10W22O81 (б).

Скачать (162KB)
4. Рис. 3. Годографы импеданса La10W22O81 (а) при разных температурах и эквивалентная схема.

Скачать (214KB)
5. Рис. 4. Температурные зависимости электропроводности La10W22O81 (1) и Nd10W22O81 (2).

Скачать (89KB)
6. Рис. 5. Зависимость проводимости La10W22O81 и Nd10W22O81 от давления кислорода в газовой фазе при разных температурах.

Скачать (147KB)
7. Рис. 6. Температурная зависимость суммы ионных чисел переноса La10W22O81 (1) и Nd10W22O81 (2) (метод ЭДС).

Скачать (64KB)
8. Рис. 7. Диаграммы изменения масс брикетов La10W22O81, t = 850°C, Q ≈ 90 Кл.

Скачать (41KB)

Примечание

1 По материалам доклада на 17-м Международном Совещании “Фундаментальные и прикладные проблемы ионики твердого тела”, Черноголовка, 16–23 июня 2024 г.


© Российская академия наук, 2025