Стал ли COVID-19 причиной девальвации рубля и валют развивающихся стран?
- Авторы: Непп А.Н.1, Джураева З.Ф.2
-
Учреждения:
- УрФУ им. первого Президента России Б. Н. Ельцина, Уральский институт управления РАНХиГС
- УрФУ им. первого Президента России Б. Н. Ельцина
- Выпуск: Том 60, № 1 (2024)
- Страницы: 17-30
- Раздел: Мировая экономика
- URL: https://rjsvd.com/0424-7388/article/view/653309
- DOI: https://doi.org/10.31857/S0424738824010023
- ID: 653309
Цитировать
Аннотация
Во время пандемии курсы валют развивающихся стран испытывали сильные колебания. Для выяснения причин высокой волатильности российского рубля, бразильского реала и индийской рупии мы исследуем воздействие COVID-19, его освещение в социальных сетях и запросы о коронавирусе в Google на курсы рассматриваемых валют по отношению к доллару в период наибольших колебаний с 01.01.2020 до 30.04.2020. Основываясь на трудах по психологии толпы, а также по поведенческим финансам, мы теоретически обосновываем воздействие внимания к коронавирусу и истерии (хайпа, hype) вокруг него на валютные рынки. Опираясь на разработанные GARCH-модели, мы эмпирически доказываем, что рост числа публикаций на тему коронавируса в национальном сегменте Facebook и Instagram сопровождался ростом волатильности национальных валют. Такие результаты наблюдались для курсов рубля, реала и рупии. Мы доказали наличие эффекта хайпа вокруг COVID-19 для курса рубля к доллару США. В условиях повышенного интереса к коронавирусу воздействие истерии вокруг него проявилось в увеличении степени воздействия освещения COVID-19 в социальных сетях на волатильность курса рубля.
Полный текст

Об авторах
А. Н. Непп
УрФУ им. первого Президента России Б. Н. Ельцина, Уральский институт управления РАНХиГС
Автор, ответственный за переписку.
Email: anepp@inbox.ru
Россия, Екатеринбург
З. Ф. Джураева
УрФУ им. первого Президента России Б. Н. Ельцина
Email: Juraevaz96@gmail.com
Россия, Екатеринбург
Список литературы
- Картаев Ф. С. (2009). Эконометрическое моделирование взаимосвязи курса рубля и динамики ВВП // Вестник Московского университета. Серия 6. Экономика. № 20. С. 57–67. [Kartaev F. S. (2009). Econometric modelling of the Interconnections between the ruble exchange rate and GDP dynamics. Moscow University Economics Bulletin. Series 6. Economy, 20, 57–67 (in Russian).]
- Кругман П., Обстфельд М. (2003). Международная экономика: теория и политика: учебник. СПб.: Питер. [Krugman P., Obstfeld M. (2003). International economics: Theory and policy: Textbook. Saint Petersburg: Piter (in Russian).]
- Непп А. Н., Зыков А. С., Егорова Ю. В. (2023). Нефть в эпоху коронавируса: истерия или закономерное падение рынка? // Экономика и математические методы. Т. 59. № 1. С. 48–64. doi: 10.31857/S042473880024876-2 [Nepp A. N., Zykov A. S., Egorova Y. V. (2023). Oil in the era of coronavirus: Hysteria or legitimate market decline? Economics and Mathematical Methods, 59 (1), 48–64. doi: 10.31857/S042473880024876-2 (in Russian).]
- ТАСС (2022). История коронавирусных ограничений в России. Режим доступа: https://tass.ru/info/15101389 [TASS. (2022). History of coronavirus restrictions in Russia. Available at: https://tass.ru/info/15101389 (in Russian).]
- Четвериков С. Н., Карасев Г. (2005). Структурные модели обменных курсов рубля. Институт экономики переходного периода. Научные труды. 88 р. [Chetverikov S. N., Karasev G. (2005). Structural models of ruble exchange rates. Institute for the Economy in Transition, Scientific Proceedings. 88 p. (in Russian).]
- Aguilar J., Nydahl S. (2000). Central bank intervention and exchange rates: The case of Sweden. Journal of International Financial Markets, Institutions and Money, 10 (3–4), 303–322. doi: 10.1016/S1042-4431 (00)00041-X
- Ali T. M., Mahmood M. T., Bashir T. (2015). Impact of interest rate, inflation and money supply on exchange rate volatility in Pakistan. World Applied Sciences Journal, 33 (4), 620–630. doi: 10.5829/idosi.wasj.2015.33.04.82
- Ansari M. G., Sensarma R. (2019). US monetary policy, oil and gold prices: Which has a greater impact on BRICS stock markets? Economic Analysis and Policy, 64, 130–151. doi: 10.1016/j.eap.2019.08.003
- Auxemery Y. (2012). Contagious psychosis: Different entities and conditions (La foliecontagieuse: Étude de différentesentités et de leurs conditions d’apparition). Annales Medico-Psychologiques, 170 (8), 527–532. doi: 10.1016/j.amp.2011.09.017
- Balassa B. (1964). The purchasing-power parity doctrine: A reappraisal. Journal of political Economy, 72 (6), 584–596.
- Bilson J. F. (1978). The monetary approach to the exchange rate: Some empirical evidence. IMF Staff Papers, 25 (1), 48–75. doi: 10.2307/3866655
- Binder C. (2020). Coronavirus fears and macroeconomic expectations. Review of Economics and Statistics, 102 (4), 721–730. doi: 10.1162/rest_a_00931
- Bollerslev T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31 (3), 307– 327. doi: 10.1016/0304-4076 (86)90063-1
- Bon G. le (1896). The crowd: A study of the popular mind. New York: Macmillan Co.
- Bondt W. F. de, Thaler R. (1985). Does the stock market overreact? Journal of Finance, 40 (3), 793–805. doi: 10.1111/j.1540-6261.1985.tb05004.x
- Chaudhry A. F. (2020). The Nexus of COVID-19 pandemic, Foreign exchange rates, and short-term returns. Empirical Economic Review, 3 (2), 1–9. doi: 10.29145/eer/32/030201
- Ciaian P., Rajcaniova M., Kancs D. A. (2016). The digital agenda of virtual currencies: Can BitCoin become a global currency? Information Systems and e-Business Management, 14 (4), 883–919. doi: 10.1007/s10257-016-0304-0
- Feng G. F., Yang H. C., Gong Q., Chang C. P. (2021). What is the exchange rate volatility response to Covid-19 and government interventions? Economic Analysis and Policy, 69, 705–719. doi: 10.1016/j.eap.2021.01.018
- Franke G., Olsen R., Pohlmeier W. (2002). Overview of forecasting models. University of Konstanz, 1–32.
- Ginsberg J., Mohebbi M. H., Patel R. S., Brammer L., Smolinski M. S., Brilliant L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457 (7232), 1012–1014. doi: 10.1038/nature07634
- Gomez-Carrasco P., Michelon G. (2017). The power of stakeholders’ voice: The effects of social media activism on stock markets. Business Strategy and the Environment, 26 (6), 855–872. doi: 10.1002/bse.1973
- Hansen P. R., Lunde A. (2005). A forecast comparison of volatility models: Does anything beat a GARCH (1, 1)? Journal of Applied Econometrics, 20 (7), 873–889. doi: 10.1002/jae.800
- Hoang T. H. van, Syed Q. R. (2021). Investor sentiment and volatility prediction of currencies and commodities during the COVID-19 pandemic. Asian Economics Letters, 1 (4), 1–6.
- Karabulut Y. (2013). Can Facebook predict stock market activity? In: AFA 2013 San Diego Meetings Paper, 1–59. doi: 10.2139/ssrn.2017099
- Karamelikli H., Karimi M. S. (2020). Asymmetric relationship between interest rates and exchange rates: Evidence from Turkey. International Journal of Finance & Economics, 1–11. doi: 10.1002/ijfe.2213
- Kristoufek L. (2015). Power-law correlations in finance-related Google searches, and their cross-correlations with volatility and traded: Evidence from the Dow–Jones Industrial components. Physica A: Statistical Mechanics and its Applications, 428, 194–205. doi: 10.1016/j.physa.2015.02.057
- Kumari P., Toshniwal D. (2022). Impact of lockdown measures during COVID-19 on air quality — A case study of India. International Journal of Environmental Health Research, 32 (3), 503–510. doi: 10.1080/09603123.2020.1778646
- Lazzini A., Lazzini S., Balluchi F., Mazza M. (2021). Emotions, moods and hyperreality: Social media and the stock market during the first phase of COVID-19 pandemic. Accounting, Auditing & Accountability Journal, 1–17. doi: 10.1108/AAAJ-08-2020-4786
- Lyocsa S., Baumöhl E., Vyrost T., Molnar P. (2020). Fear of the coronavirus and the stock markets. Finance Research Letters, 36, 101735. doi: 10.1016/j.frl.2020.101735
- McKibbin W.J., Fernando R. (2020). Global macroeconomic scenarios of the COVID-19 pandemic. CAMA Working Paper, 62/2020, 1–55.
- Muller-Plantenberg N.A. (2010). Balance of payments accounting and exchange rate dynamics. International Review of Economics & Finance, 19 (1), 46–63. doi: 10.1016/j.iref.2009.02.010
- Mundell R. A. (1963). Capital mobility and stabilization policy under fixed and flexible exchange rates. Canadian Journal of Economics and Political Science/Revue Canadienne de Economiques et Science Politique, 29 (4), 475–485. doi: 10.2307/139336
- Nepp A., Okhrin O., Egorova J., Dzhuraeva Z., Zykov A. (2022). What threatens stock markets more – The coronavirus or the hype around it? International Review of Economics & Finance, 78, 519–539. doi: 10.1016/j.iref.2021.12.007
- Parveen S., Khan A. Q., Ismail M. (2012). Analysis of the factors affecting exchange rate variability in Pakistan. Academic Research International, 2 (3), 670. doi: 10.9790/487X-1662115121
- Paulos J. A. (2020). We’re reading the coronavirus numbers wrong. The New York Times, February 18. Available at: https://www.nytimes.com/2020/02/18/opinion/coronavirus-china-numbers.html
- Pavlovic N. (2018). Factors affecting herd behaviour in buying decisions influenced by online communities. AMCIS, 1–10.
- Rogoff K. (1996). The purchasing power parity puzzle. Journal of Economic Literature, 34 (2), 647–668.
- Silva L., Figueiredo Filho D., Fernandes A. (2020). The effect of lockdown on the COVID-19 epidemic in Brazil: Evidence from an interrupted time series design. Cadernos de Saude Publica, 36, e00213920.
- Valle-Cruz D., Fernandez-Cortez V., Lopez-Chau A., Sandoval-Almazan R. (2021). Does twitter affect stock market decisions? Financial sentiment analysis during pandemics: A comparative study of the h1n1 and the covid-19 periods. Cognitive Computation, 1–16. doi: 10.1007/s12559-021-09819-8
- Volkov N. I., Yuhn K. H. (2016). Oil price shocks and exchange rate movements. Global Finance Journal, 31, 18–30. doi: 10.1016/j.gfj.2016.11.001
- World Bank (2020). Coping with a dual shock: COVID-19 and oil prices. Available at: https://www.worldbank.org/en/region/mena/brief/coping-with-a-dual-shock-coronavirus-covid-19-and-oil-prices
- Yaya O. S., Olubusoye O. E., Ojo O. O. (2014). Estimates and forecasts of GARCH model under misspecified probability distributions: A Monte Carlo simulation approach. Journal of Modern Applied Statistical Methods, 13 (2), 28. doi: 10.22237/jmasm/1414816020
Дополнительные файлы
