Study of the Antiferromagnetic State Nematics in EuFe2As2 by Using Spin-Resonance and Magnetic Measurements

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Using electron spin resonance spectroscopy and SQUID-magnetometry we obtained direct evidence of the occurrence of magnetic domains in the antiferromagnetically ordered state of a 
 single crystal. The resonance spectra of europium ions were measured in the temperature range from 4 to 200 K. Using an equation for the resonance field in an antiferromagnet that takes into account the exchange and anisotropy fields, we have performed an analysis of the angular dependence of the spectrum at a temperature of 4.8 K, measured upon the crystal rotation around the c axis. Data analysis showed that 
 is the antiferromagnet with easy anisotropy plane. Besides, we found in the 
-plane the second order axes of easy magnetization for each of the two types of magnetic domains, related to the structural transition and the formation of twins. Magnetic anisotropy caused by the exchange interaction of europium ions with iron ions indicates the occurrence of nematic magnetic ordering in the basal 
 plane. An estimate of the magnitude of the exchange field and the anisotropy field is obtained from the angular dependence of the resonance fields.

作者简介

Yu. Talanov

Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of Sciences

Email: talanov@kfti.knc.ru
Kazan, Russia

I. Gimazov

Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of Sciences

Email: talanov@kfti.knc.ru
Kazan, Russia

R. Zaripov

Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of Sciences

Email: talanov@kfti.knc.ru
Kazan, Russia

K. Pervakov

Ginzburg Research Center, Lebedev Physical Institute, Russian Academy of Sciences

Email: talanov@kfti.knc.ru
Moscow, Russia

V. Vlasenko

Ginzburg Research Center, Lebedev Physical Institute, Russian Academy of Sciences

Email: talanov@kfti.knc.ru
Moscow, Russia

V. Pudalov

Ginzburg Research Center, Lebedev Physical Institute, Russian Academy of Sciences

Email: talanov@kfti.knc.ru
Moscow, Russia

G. Teytel'baum

Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: talanov@kfti.knc.ru
Kazan, Russia

参考

  1. T.K. Kim, K. S. Pervakov, D.V. Evtushinsky et al. (Collaboration), Phys. Rev. B 103, 174517 (2021).
  2. T.K. Kim, K. S. Pervakov, D.V. Evtushinsky et al. (Collaboration), Phys. Rev. B 103, 174517 (2021).
  3. Т.К. Ким, К.С. Перваков, А.В. Садаков и др. (Collaboration), УФН 192(7), 790 (2022).
  4. Т.К. Ким, К.С. Перваков, А.В. Садаков и др. (Collaboration), УФН 192(7), 790 (2022).
  5. V. S. Stolyarov, K. S. Pervakov, A. S. Astrakhantseva, I.A. Golovchanskiy, D.V. Vyalikh, T.K. Kim, S.V. Eremeev, V.A. Vlasenko, V. M. Pudalov, A.A. Golubov, E.V. Chulkov, and D. Roditchev, J. Phys. Chem. Lett. 11, 9393 (2020).
  6. V. S. Stolyarov, K. S. Pervakov, A. S. Astrakhantseva, I.A. Golovchanskiy, D.V. Vyalikh, T.K. Kim, S.V. Eremeev, V.A. Vlasenko, V. M. Pudalov, A.A. Golubov, E.V. Chulkov, and D. Roditchev, J. Phys. Chem. Lett. 11, 9393 (2020).
  7. D. Collomb, S. J. Bending, A.E. Koshelev, M.P. Smylie, L. Farrar, J.-K. Bao, D.Y. Chung, M.G. Kanatzidis, W.-K. Kwok, and U.Welp, Phys. Rev. Lett. 126, 157001 (2021).
  8. D. Collomb, S. J. Bending, A.E. Koshelev, M.P. Smylie, L. Farrar, J.-K. Bao, D.Y. Chung, M.G. Kanatzidis, W.-K. Kwok, and U.Welp, Phys. Rev. Lett. 126, 157001 (2021).
  9. Y. Xiao, Y. Su, M. Meven, R. Mittal, C.M.N. Kumar, T. Chatterji, S. Price, J. Persson, N. Kumar, S.K. Dhar, A. Thamizhavel, and Th. Brueckel, Phys. Rev. B 80, 174424 (2009).
  10. Y. Xiao, Y. Su, M. Meven, R. Mittal, C.M.N. Kumar, T. Chatterji, S. Price, J. Persson, N. Kumar, S.K. Dhar, A. Thamizhavel, and Th. Brueckel, Phys. Rev. B 80, 174424 (2009).
  11. A.L. Wysocki, K.D. Belashchenko, and V.P. Antropov, Nat. Phys. 7, 485 (2011).
  12. A.L. Wysocki, K.D. Belashchenko, and V.P. Antropov, Nat. Phys. 7, 485 (2011).
  13. J. Maiwald, I. I. Mazin, and P. Gegenwart, Phys. Rev. X 8, 011011 (2018).
  14. J. Maiwald, I. I. Mazin, and P. Gegenwart, Phys. Rev. X 8, 011011 (2018).
  15. J. J. Sanchez, G. Fabbris, Y. Choi, Y. Shi, P. Malinowski, Sh. Pandey, J. Liu, I. I. Mazin, J.-W. Kim, Ph. Ryan, and J.-H. Chu, Phys. Rev. B 104, 104413 (2021).
  16. J. J. Sanchez, G. Fabbris, Y. Choi, Y. Shi, P. Malinowski, Sh. Pandey, J. Liu, I. I. Mazin, J.-W. Kim, Ph. Ryan, and J.-H. Chu, Phys. Rev. B 104, 104413 (2021).
  17. S. Zapf, C. Stingl, K.W. Post, J. Maiwald, N. Bach, I. Pietsch, D. Neubauer, A. L¨ohle, C. Clauss, S. Jiang, H. S. Jeevan, D.N. Basov, P. Gegenwart, and M. Dressel, Phys. Rev. Lett. 113, 227001 (2014).
  18. S. Zapf, C. Stingl, K.W. Post, J. Maiwald, N. Bach, I. Pietsch, D. Neubauer, A. L¨ohle, C. Clauss, S. Jiang, H. S. Jeevan, D.N. Basov, P. Gegenwart, and M. Dressel, Phys. Rev. Lett. 113, 227001 (2014).
  19. Y. Xiao, Y. Su, S. Nandi, S. Price, B. Schmitz, C.M.N. Kumar, R. Mittal, T. Chatterji, N. Kumar, S.K. Dhar, A. Thamizhavel, and Th. Br¨uckel, Phys. Rev. B 85, 094504 (2012).
  20. Y. Xiao, Y. Su, S. Nandi, S. Price, B. Schmitz, C.M.N. Kumar, R. Mittal, T. Chatterji, N. Kumar, S.K. Dhar, A. Thamizhavel, and Th. Br¨uckel, Phys. Rev. B 85, 094504 (2012).
  21. Sh. Jiang, Y. Luo, Zh. Ren, Z. Zhu, C. Wang, X. Xu, Q. Tao, G. Cao, and Zh. Xu, New J. Phys. 11, 025007 (2009).
  22. Sh. Jiang, Y. Luo, Zh. Ren, Z. Zhu, C. Wang, X. Xu, Q. Tao, G. Cao, and Zh. Xu, New J. Phys. 11, 025007 (2009).
  23. J. Herrero-Martin, V. Scagnoli, C. Mazzoli, Y. Su, R. Mittal, Y. Xiao, Th. Brueckel, N. Kumar, S.K. Dhar, A. Thamizhavel, and L. Paolasini, Phys. Rev. B 80, 134411 (2009).
  24. J. Herrero-Martin, V. Scagnoli, C. Mazzoli, Y. Su, R. Mittal, Y. Xiao, Th. Brueckel, N. Kumar, S.K. Dhar, A. Thamizhavel, and L. Paolasini, Phys. Rev. B 80, 134411 (2009).
  25. E. Dengler, J. Deisenhofer, H.-A. Krug von Nidda, S. Khim, J. S. Kim, K.H. Kim, F. Casper, C. Felser, and A. Loidl, Phys. Rev. B 81, 024406 (2010).
  26. E. Dengler, J. Deisenhofer, H.-A. Krug von Nidda, S. Khim, J. S. Kim, K.H. Kim, F. Casper, C. Felser, and A. Loidl, Phys. Rev. B 81, 024406 (2010).
  27. I.A. Golovchanskiy, N.N. Abramov, V.A. Vlasenko, K. Pervakov, I.V. Shchetinin, P. S. Dzhumaev, O.V. Emelyanova, D. S. Baranov, D. S. Kalashnikov, K.B. Polevoy, V.M. Pudalov, and V. S. Stolyarov, Phys. Rev. B 106, 024412 (2022).
  28. I.A. Golovchanskiy, N.N. Abramov, V.A. Vlasenko, K. Pervakov, I.V. Shchetinin, P. S. Dzhumaev, O.V. Emelyanova, D. S. Baranov, D. S. Kalashnikov, K.B. Polevoy, V.M. Pudalov, and V. S. Stolyarov, Phys. Rev. B 106, 024412 (2022).
  29. Myung Joon Han, Quan Yin, W.E. Pickett, and S.Y. Savrasov, Phys. Rev. Lett. 102, 107003 (2009).
  30. Myung Joon Han, Quan Yin, W.E. Pickett, and S.Y. Savrasov, Phys. Rev. Lett. 102, 107003 (2009).
  31. F.A. Garcia, E.M. Bittar, C. Adriano, T.M. Garitezi, C. Rettori, and P.G. Pagliuso, J. Phys.: Conf. Ser. 273, 012093 (2011).
  32. F.A. Garcia, E.M. Bittar, C. Adriano, T.M. Garitezi, C. Rettori, and P.G. Pagliuso, J. Phys.: Conf. Ser. 273, 012093 (2011).
  33. M. Ikeda and M. Hagiwara, J. Korean Phys. Soc. 62, 2007 (2013).
  34. M. Ikeda and M. Hagiwara, J. Korean Phys. Soc. 62, 2007 (2013).
  35. F. J. Dyson, Phys. Rev. 98, 349 (1955).
  36. F. J. Dyson, Phys. Rev. 98, 349 (1955).
  37. S.E. Barnes, Adv. Phys. 30, 801 (1981).
  38. S.E. Barnes, Adv. Phys. 30, 801 (1981).
  39. J. P. Joshi and S.V. Bhat, J. Magn. Reson. 168, 284 (2004).
  40. J. P. Joshi and S.V. Bhat, J. Magn. Reson. 168, 284 (2004).
  41. C. Kittel, Phys. Rev. 73, 155 (1948).
  42. C. Kittel, Phys. Rev. 73, 155 (1948).
  43. А. Г. Гуревич, Магнитный резонанс в ферритах и антиферромагнетиках, Наука, М. (1973).
  44. А. Г. Гуревич, Магнитный резонанс в ферритах и антиферромагнетиках, Наука, М. (1973).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Российская академия наук, 2023