Dinamika giperzvukovykh udarnykh voln, generiruemykh pri lazernom uskorenii tonkoplenochnykh misheney v lazernoy udarnoy trube i svobodnom prostranstve

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Исследована динамика сильных плоских ударных волн, генерируемых при ускорении тонких полимерных СН пленок аблиционным давлением плазмы, создаваемой УФ импульсами излучения KrF лазера (100 Дж & 100 нс) в гиперзвуковой лазерной ударной трубе квадратного сечения 7 × 7 мм и длиной 50 мм. При плотности энергии падающего излучения 70 Дж/см2 и интенсивности 0.7 ГВт/см2 скорость ударных волн в воздухе при атмосферном давлении 2.6 км/с (число Маха М = 8.2) – сохранялась по мере распространения в лазерной ударной трубе, а в режиме удержания лазерной плазмы прозрачной пластиной из кварца увеличивалась еще на 30–50 %. Показано, что время квазистационарного распространения ударных волн в лазерной ударной трубе ∼ 20 мкс – определяется плотностью энергии лазерного импульса, сообщаемой плазменному поршню. Для сравнения, скорость ударных волн в свободном пространстве быстро затухала за счет бокового расширения газа, когда фронт ударных волн приобретал форму полусферы.

Sobre autores

V. Zvorykin

Физический институт им. П. Н. Лебедева РАН

Email: zvorykin@sci.lebedev.ru
Москва, Россия

Bibliografia

  1. Гидродинамические неустойчивости в мишенях инерционного термоядерного синтеза, монография под ред. Н.В. Невмержицкого, ФГУП “РФЯЦВНИЭФЭ”, Саров (2024), 414 с.
  2. Н. А. Фомин, Инженерно-физический журнал 83(6), 1058 (2010)
  3. G. S. Balan and S. A. Raj, International Journal of Impact Engineering 172, 104406 (2023); doi: 10.1016/j.ijimpeng.2022.104406.
  4. Y. Kang, J. Wang, S. Zhang, D. Wang, T. Ma, and H. Wei, A Review of the Development of Shock Tubes for Simulating Blast Waves, 2023 IEEE 16th International Conference on Electronic Measurement & Instruments (ICEMI), Harbin, China (2023), p. 416; doi: 10.1109/ICEMI59194.2023.10269910.
  5. Z. Wu, D. Jin, B. Yu, S. Chen, S. Deng, X. Song, W. Yu, Y. Sui, H. Wu, W. Shi, and M. Wang, Sci. Rep. 15(11468) (2025); DOI: https://doi.org/10.1038/s41598-025-93836-2.
  6. S. Janardhanraj, K. Abhishek, and G. Jagadeesh, J. Fluid Mech. 910, A3 (2021); doi: 10.1017/jfm.2020.914.
  7. Y. Mu, J. Zhang, M. Yang, Y. Mao, H. Huang, and X. Zheng, Rev. Sci. Instrum. 95, 115103 (2024); DOI: 10/1063/5.0213918.
  8. В. Д. Зворыкин, И. Г. Лебо, Квантовая электроника 30(6), 540 (2000)
  9. V. D. Zvorykin, P. V. Veliev, I. A. Kozin, N. V. Morozov, E. V. Parkevich, K. T. Smaznova, N. N. Ustinovskii, and A. V. Shutov, Fundamental Plasma Physics 10, 100046 (2024); doi: 10.1016/j.fpp.2024.100046.
  10. V. G. Bakaev, D. Batani, I. A. Krasnyuk, I. G. Lebo, A. O. Levchenko, G. V. Sychugov, V. F. Tishkin, D. A. Zayarnyi, and V. D. Zvorykin, Journal of Physics D: Applied Physics 38, 2031 (2005); doi: 10.1088/0022-3727/38/12/027.
  11. I. A. Krasnyuk and I. G. Lebo, Journal of Physics D: Applied Physics 39, 1462 (2006); doi: 10.1088/0022-3727/39/7/018.
  12. В.А. Данилычев, В. Д. Зворыкин, Труды ФИАН 142, 117 (1983)
  13. M. Busquet, P. Barroso, T. Melse, and D. Bauduin, Rev. Sci. Instrum. 81(023502) (2010); doi: 10.1063/1.3301431.
  14. R. L.Singh, C. Stehl, M. Kozlova, M. Cotelo, J. Dostal, R. Dudzak, R. Rodriguez, P. Velarde, P. Barroso, F. Suzuki-Vidal, and T. Pisarczyk, Phys. Plasmas 31(033301) (2024); doi: 10.1063/5.0188810.
  15. Y. Kai, W. Garen, T. Schlegel, and U. Teubner, Laser and Particle Beams 35(4), 610 (2017); doi: 10.1017/S0263034617000635.
  16. U. Teubner, Y. Kai, T. Schlegel, D. E. Zeitoun, and W. Garen, New J. Phys. 19, 103016 (2017); doi: 10.1088/1367-2630/aa83d8.
  17. V. D. Zvorykin and I. G. Lebo, Laser and Particle Beams 17, 69 (1999); doi: 10.1017/s0263034699171064.
  18. А. З. Грасюк, В. Ф. Ефимков, И.Г. Зубарев, А. В. Котов, В. Г. Смирнов, Активные среды, конструкции и схемы мощных комбинационных лазеров, Труды ФИАН 91, 116 (1977)
  19. V. D. Zvorykin, N. G. Borisenko, K. S. Pervakov, A. V. Shutov, and N. N. Ustinovskii, Symmetry 15, 16882023 (2023); doi: 10.3390/sym15091688.
  20. G. Wypych, Handbook of Polymers, ChemTec Publishing, Toronto (2012), p. 541; http://www.chemtec.org/proddetail.php?prod=978-1895198-47-8.
  21. Я. Б. Зельдович, Ю. П. Райзер, Физика ударных волн и высокотемпературных гидродинамических явлений, Наука, М. (1966).
  22. Н. М. Кузнецов, Термодинамические функции и ударные адиабаты воздуха при высоких температурах, Машиностроение, М. (1965).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025