Nuclear modification factor IAA in AA collisions at RHIC and LHC energies in scenarios with and without quark-gluon plasma formation in pp collisions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

We calculate the away-side hadron-triggered modification factor IAA in AA collisions at RHIC and LHC energies for scenarios with and without quark-gluon plasma formation in pp collision. We find that for both scenarios theoretical results for IAA agree well with the available data for 2.76 TeV Pb + Pb and 0.2 TeV Au + Au collisions. We make predictions for IAA in 7 TeV O + O collisions that are planned at the LHC. Our results show that measuring IOO in the whole centrality interval and at small centrality (≲ 5 %) may give information on the presence of jet quenching in pp collisions.

Sobre autores

B. Zakharov

L. D. Landau Institute for Theoretical Physics

Email: bgz@itp.ac.ru
Moscow, Russia

Bibliografia

  1. P. Romatschke and U. Romatschke, arXiv:1712.05815, and references therein.
  2. M. Connors, C. Nattrass, R. Reed, and S. Salur, Rev. Mod. Phys. 90, 025005 (2018); arXiv:1705.01974.
  3. V. Khachatryan et al. (CMS Collaboration), JHEP 1009, 091 (2010); arXiv:1009.4122.
  4. G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 116, 172301 (2016); arXiv:1509.04776.
  5. E. V. Shuryak, Phys. Lett. B 78, 150 (1978).
  6. J. Adam et al. (ALICE Collaboration), Nature Phys. 13, 535 (2017); arXiv:1606.07424.
  7. R. Campanini, G. Ferri, and G. Ferri, Phys. Lett. B 703, 237 (2011).
  8. L. van Hove, Phys. Lett. B 118, 138 (1982).
  9. R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peign´e, and D. Schiff, Nucl. Phys. B 483, 291 (1997); hep-ph/9607355.
  10. B. G. Zakharov, JETP Lett. 63, 952 (1996); hep-ph/9607440.
  11. U. A. Wiedemann, Nucl. Phys. A 690, 731 (2001); hep-ph/0008241.
  12. M. Gyulassy, P. L´evai, and I. Vitev, Nucl. Phys. B 594, 371 (2001); hep-ph/0006010.
  13. P. Arnold, G. D. Moore, and L. G. Yaffe, JHEP 0206, 030 (2002); hep-ph/0204343.
  14. J. D. Bjorken, Fermilab preprint 82/59-THY (1982).
  15. J. F. Grosse-Oetringhaus and U. A. Wiedemann, arXiv:2407.07484.
  16. X.-N. Wang, Phys. Lett. B 595, 165 (2004); nucl-th/0305010.
  17. A. Adare et al. (PHENIX Collaboration), Phys. Rev. C 78, 014901 (2008); arXiv:0801.4545.
  18. N. J. Abdulameer et al. (PHENIX Collaboration), Phys. Rev. C 110, 044901 (2024); arXiv:2406.08301.
  19. K. Aamodt et al. (ALICE Collaboration), Phys. Rev. Lett. 108, 092301 (2012); arXiv:1110.0121.
  20. J. Adam et al. (ALICE Collaboration), Phys. Lett. B 763, 238 (2016); arXiv:1608.07201.
  21. B. G. Zakharov, JHEP 09, 087 (2021); arXiv:2105.09350.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025