Scanning of Electronic States in a Quantum Point Contact Using Asymmetrically Biased Side Gates

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The conductance of a trench-type quantum point contact (QPC) with side gates has been experimentally investigated over a wide range of gate voltages. The performed measurements, in which the asymmetric gate bias modifies the confinement potential while the sum of the gate voltages populates it with electrons, made it possible to scan the electron states in the QPC. Analysis of the experimental data revealed an unusual four-well shape of the confining potential in a single QPC. The rather complicated transconductance plot measured can be divided into its component parts—the contributions of the four separate conducting channels. Different electron states observed in the experiment have been associated with a certain number of filled one-dimensional (1D) subbands belonging to different channels. A whole network of degeneration events of 1D subbands in parallel channels has been found. Almost every such event was experimentally manifested by anticrossings observed both for small and large numbers of filled 1D subbands.

Sobre autores

D. Pokhabov

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences; Faculty of Physics, Novosibirsk State University

Email: pokhabov@isp.nsc.ru
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

A. Pogosov

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences; Faculty of Physics, Novosibirsk State University

Email: pokhabov@isp.nsc.ru
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

E. Zhdanov

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences; Faculty of Physics, Novosibirsk State University

Email: pokhabov@isp.nsc.ru
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

A. Bakarov

Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences; Faculty of Physics, Novosibirsk State University

Autor responsável pela correspondência
Email: pokhabov@isp.nsc.ru
630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia

Bibliografia

  1. B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988).
  2. D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, J. Phys. C: Solid State Phys. 21, L209 (1988).
  3. P. Debray, S. M. S. Rahman, J. Wan, R. S. Newrock, M. Cahay, A. T. Ngo, S. E. Ulloa, S. T. Herbert, M. Muhammad, and M. Johnson, Nat. Nanotechnol. 4, 759 (2009).
  4. D. A. Pokhabov, A. G. Pogosov, E. Yu. Zhdanov, A. A. Shevyrin, A. K. Bakarov, and A. A. Shklyaev, Appl. Phys. Lett. 112, 082102 (2018).
  5. T. Masuda, K. Sekine, K. Nagase, K. S. Wickramasinghe, T. D. Mishima, M. B. Santos, and Y. Hirayama, Appl. Phys. Lett. 112, 192103 (2018).
  6. D. A. Pokhabov, A. G. Pogosov, E. Yu. Zhdanov, A. K. Bakarov, and A. A. Shklyaev, Appl. Phys. Lett. 115, 152101 (2019).
  7. I. M. Castleton, A. G. Davies, A. R. Hamilton, J. E. F. Frost, M. Y. Simmons, D. A. Ritchie, and M. Pepper, Physica B 249-251, 157 (1998).
  8. K. J. Thomas, J. T. Nicholls, M. Y. Simmons, W. R. Tribe, A. G. Davies, and M. Pepper, Phys. Rev. B 59, 12252 (1999).
  9. P. J. Simpson, D. R. Mace, C. J. B. Ford, I. Zailer, M. Pepper, D. A. Ritchie, J. E. F. Frost, M. P. Grimshaw, and G. A. C. Jones, Appl. Phys. Lett. 63, 3191 (1993).
  10. W. K. Hew, K. J. Thomas, M. Pepper, I. Farrer, D. Anderson, G. A. C. Jones, and D. A. Ritchie, Phys. Rev. Lett. 102, 056804 (2009).
  11. L. W. Smith, W. K. Hew, K. J. Thomas, M. Pepper, I. Farrer, D. Anderson, G. A. C. Jones, and D. A. Ritchie, Phys. Rev. B 80, 041306 (2009).
  12. W. K. Hew, K. J. Thomas, M. Pepper, I. Farrer, D. Anderson, G. A. C. Jones, and D. A. Ritchie, Physica E 42, 1118 (2010).
  13. L. W. Smith, W. K. Hew, K. J. Thomas, M. Pepper, I. Farrer, D. Anderson, G. A. C. Jones, and D. A. Ritchie, Physica E 42, 1114 (2010).
  14. S. Kumar, K. J. Thomas, L. W. Smith, M. Pepper, G. L. Creeth, I. Farrer, D. Ritchie, G. Jones, and J. Gri ths, Phys. Rev. B 90, 201304(R) (2014).
  15. S. Kumar, M. Pepper, H. Montagu, D. Ritchie, I. Farrer, J. Gri ths, and G. Jones, Appl. Phys. Lett. 118, 124002 (2021).
  16. A. V. Chaplik, JETP Lett. 31, 252 (1980).
  17. J. S. Meyer and K. A. Matveev, J. Phys.: Condens. Matter 21, 023203 (2009).
  18. J. S. Meyer, K. A. Matveev, and A. I. Larkin, Phys. Rev. Lett. 98, 126404 (2007).
  19. A. C. Mehta, C. J. Umrigar, J. S. Meyer, and H. U. Baranger, Phys. Rev. Lett. 110, 246802 (2013).
  20. Д. И. Сарыпов, Д. А. Похабов, А. Г. Погосов, Е. Ю. Жданов, А. К. Бакаров, Письма в ЖЭТФ 116(6), 50 (2022).
  21. Д. А. Похабов, А. Г. Погосов, Е. Ю. Жданов, А. К. Бакаров, А. А. Шкляев, ФТП 54, 1344 (2020).
  22. E. T. Owen and C. H. W. Barnes, Phys. Rev. Appl. 6, 054007 (2016).
  23. I. I. Yakimenko and I. P. Yakimenko, J. Phys.: Condens. Matter 34, 105302 (2022).
  24. D. A. Pokhabov, A. G. Pogosov, E. Yu. Zhdanov, A. K. Bakarov, and A. A. Shklyaev, Appl. Phys. Lett. 118, 012104 (2021).
  25. K.-J. Friedland, R. Hey, H. Kostial, R. Klann, and K. Ploog, Phys. Rev. Lett. 77, 4616 (1996).
  26. A. G. Pogosov, M. V. Budantsev, E. Yu. Zhdanov, D. A. Pokhabov, A. K. Bakarov, and A. I. Toropov, Appl. Phys. Lett. 100, 181902 (2012).
  27. A. G. Pogosov, A. A. Shevyrin, D. A. Pokhabov, E. Yu. Zhdanov, and S. Kumar, J. Phys: Condens. Matter 34, 263001 (2022).
  28. Л. И. Глазман, Г. Б. Лесовик, Д. Е. Хмельницкий, Р. И. Шехтер, Письма в ЖЭТФ 48, 218 (1988).
  29. M. Bu¨ttiker, Phys. Rev. B 41, 7906(R) (1990).
  30. A. Gupta, J. J. Heremans, G. Kataria, M. Chandra, S. Fallahi, G. C. Gardner, and M. J. Manfra, Nat.Commun. 12, 5048 (2021).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Российская академия наук, 2023