Simulation of atomic motion by random shift of transition frequencies in the method of coupled dipoles

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the influence of atomic motion on the optical properties of atomic ensembles cooled in special laser traps. We analyze the possibility to simulate the continuous displacement of atoms within the framework of motionless coupled dipoles method, in which slow motion is modeled, firstly, by averaging over their random spatial distribution, and, secondly, by introducing a random shift of their frequencies, simulating Doppler effects. A direct comparison of the results obtained for moving atoms with the model ones revealed a very limited range of applicability of the latter.

全文:

受限制的访问

作者简介

A. Ammosov

Peter the Great Saint Petersburg Polytechnic University

Email: sokolov_im@spbstu.ru
俄罗斯联邦, Saint Petersburg

G. Voloshin

Peter the Great Saint Petersburg Polytechnic University

Email: sokolov_im@spbstu.ru
俄罗斯联邦, Saint Petersburg

Ya. Fofanov

Institute for Analytical Instrumentation of the Russian Academy of Sciences

Email: sokolov_im@spbstu.ru
俄罗斯联邦, Saint Petersburg

I. Sokolov

Peter the Great Saint Petersburg Polytechnic University; Institute for Analytical Instrumentation of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: sokolov_im@spbstu.ru
俄罗斯联邦, Saint Petersburg; Saint Petersburg

参考

  1. Hau L.V. // Nature Photonics. 2008. V. 2. P. 451.
  2. Bouwmeester D., Ekert A., Zeilinger A. The physics of quantum information. Berlin: Springer-Verlag, 2001.
  3. Bloom B.J., Nicholson T.L., Williams J.R. et al. // Nature. 2014. V. 506. P. 71.
  4. Labeyrie G. // Modern Phys. Lett. B. 2008 V. 22. P. 73.
  5. Müller C.A., Delande D. / in: Les Houches 2009—Session XCI: Ultracold Gases and Quantum Information. Oxford University Press, 2011. P. 441.
  6. Kupriyanov D.V., Sokolov I.M., Havey M.D. // Phys. Reports. 2017. V. 671. P. 1.
  7. Guerin W. // Adv. Atom. Mol. Opt. Physics. 2023. V. 72. P. 253.
  8. Sokolov I.M., Guerin W. // JOSA B. 2019. V. 36. P. 2030.
  9. Javanainen J., Ruostekoski J., Li Y., Yoo S.-M. // Phys. Rev. Lett. 2014. V. 112. Art. No. 113603.
  10. Jenkins S.D., Ruostekoski J., Jennewein S. et al. // Phys. Rev. A. 2016. V. 94. Art. No. 023842.
  11. Foldy L.L. // Phys. Rev. 1945. V. 67. P. 107.
  12. Lax M. // Rev. Mod. Phys. 1951. V. 23. P. 287.
  13. Pellegrino J., Bourgain R., Jennewein S. et al. // Phys. Rev. Lett. 2014. V. 113. Art. No. 133602.
  14. Bromley S.L., Zhu B., Bishof M. et al.// Nature Commun. 2016. V. 7. Art. No. 11039.
  15. Guerin W., Araujo M.O., Kaiser R. // Phys. Rev. Lett. 2016. V. 116. Art. No. 083601.
  16. Friedberg R., Manassah J.T. // Phys. Rev. A. 2011. V. 84. Art. No. 023839.
  17. Balik S., Win A.L., Havey M.D. et al. // Phys. Rev. A. 2013. V. 87. Art. No. 053817.
  18. Scully M.O. // Phys. Rev. Lett. 2015. V. 115. Art. No. 243602.
  19. Svidzinsky A.A., Li F., Li H. et al. // Phys. Rev. A. 2016. V. 93. Art. No. 043830.
  20. Курапцев А.С., Соколов И.М., Баранцев К.А. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. № 3. С. 293; Kuraptsev A. S., Sokolov I. M., Barantsev K. A. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. P. 242.
  21. Курапцев А.С., Баранцев К.А., Литвинов А.Н. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. С. 787; Kuraptsev A.S., Barantsev K.F., Litvinov A.N. et аl. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. P. 661.
  22. Соколов И.М. // Письма в ЖЭТФ. 2023. Т. 117. № 7. С. 518; Sokolov I.M. // JETP Lett. 2023. V. 117. P. 517.
  23. Skipetrov S.E., Sokolov I.M. // Phys. Rev. Lett. 2014. V. 112. Art. No. 023905.
  24. Skipetrov S.E., Sokolov I.M. // Phys. Rev. Lett. 2015. V. 114. Art. No. 053902.
  25. Соколов И.М., Куприянов Д.В., Хэви М.Д. // ЖЭТФ. 2011. Т. 139. С. 288; Sokolov I.M., Kupriyanov D.V., Havey M.D. // JETP. 2011. V. 112. P. 246.
  26. Fofanov Ya.A., Kuraptsev A.S., Sokolov I.M., Havey M.D. // Phys. Rev. A. 2011. V. 84. Art. No. 053811.
  27. Chomaz L., Corman L., Yefsah T. et al. // New J. Phys. 2012. V. 14. Art. No. 055001.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Comparison of the excitation spectra of atoms in the ensemble obtained by modelling the motion by Doppler shifts (curves 1 and 2) and by explicitly taking into account the displacement of atoms with time (curves 3 and 4), n = 10-1k30. Curves 1 and 3 correspond to k0v0 = 0.1γ, curves 2 and 4 to k0v0 = 0.5γ

下载 (82KB)
3. Fig. 2. Dynamics of the instantaneous fluorescence delay time for an ensemble of atoms at k0v0 = 0.05 calculated by modelling the motion by Doppler shifts (1) and accounting for the displacement of atoms with time (2). For comparison, curve 3 is shown corresponding to stationary atoms

下载 (68KB)
4. Fig. 3. Comparison of the diffusion film time τd calculated by the coupled oscillator method taking into account the continuous displacement of atoms (1) and by the same method but modelling the motions by frequency shifts (2)

下载 (65KB)
5. Fig. 4. Dependence of the averaged transmittance of the atomic ensemble Tr on its thickness k0L at different temperatures. For convenience, the transmittance multiplied by the ensemble thickness k0LTr is given. Curves 1, 3, 5 are calculated taking into account the continuous displacement of atoms, 2, 4, 6 - modelling of motion by random shifts of transition frequencies of fixed atoms. The pairs of curves 1 and 2, 3 and 4, 5 and 6 are obtained for k0v0 = 0.1γ, k0v0 = 0.025γ and k0v0 = 0.05γ, respectively

下载 (95KB)

版权所有 © Russian Academy of Sciences, 2024