Dynamics of floating droplets of magnetic liquid in glycerin in a flat channel under the influence of a magnetic field

Capa

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of the study of the influence of the magnitude of the magnetic field strength and the concentration of the magnetic phase of the magnetic fluid (MF) on the elongation coefficient and the shape of the drop of MF floating in glycerin are presented. The dependences of the elongation coefficient of the ML droplet on the parameters of the magnetic fluids used and the strength of the magnetic field intensity are obtained.

Texto integral

Acesso é fechado

Sobre autores

E. Sokolov

Southwest State University

Email: r-piter@yandex.ru
Rússia, Kursk

D. Kalyuzhnaya

Southwest State University

Email: r-piter@yandex.ru
Rússia, Kursk

A. Pribylov

Southwest State University

Email: r-piter@yandex.ru
Rússia, Kursk

R. Politov

Southwest State University

Email: r-piter@yandex.ru
Rússia, Kursk

P. Ryapolov

Southwest State University

Autor responsável pela correspondência
Email: r-piter@yandex.ru
Rússia, Kursk

Bibliografia

  1. Розенцвейг Р.Е. Феррогидродинамика. М.: Мир, 1989. 240 c.
  2. Ivanov A.S., Pshenichnikov A.F., Khokhryakova C.A. // Phys. Fluids. 2020. P. 112007.
  3. Тятюшкин А.Н. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 885; Tyatyushkin A.N. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 804.
  4. Такетоми С., Тикадзуми С. Магнитные жидкости. М.: Мир, 1993. 272 с.
  5. Белых С.С., Ерин К.В. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 962; Belykh S.S., Yerin C.V. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 878.
  6. Ряполов П.А., Соколов Е.А., Шельдешова Е.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 343; Ryapolov P.A., Sokolov E.A., Shel’deshova E.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 295.
  7. Ряполов П.А., Соколов Е.А., Калюжная Д.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 348; Ryapolov P.A., Sokolov E.A., Kalyuzhnaya D.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 300.
  8. Li X., Yu P, Niu X.D. et al. // Appl. Math. Comput. 2021. V. 393. Art. No. 125769.
  9. Li X., Dong Z.Q., Yu P. et al. // Phys. Fluids. 2020. Art. No. 083309.
  10. Huang X., Saadat M., Bijarchi M.A. et al. // Chem. Eng. Sci. 2023. Art. No. 118519.
  11. Zhang Y., Jiang S., Hu Y. et al. // Nano Lett. 2022. P. 2923.
  12. Li X. et al. // Appl. Math. Comput. 2021. V. 393. Art. No. 125769.
  13. Niu X.D., Li Y., Ma Y.R. et al. // Phys. Fluids. 2018. V. 30. No. 1. Art. No. 013302.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Block diagram of the installation.

Baixar (54KB)
3. Fig. 2. Dependence of the magnetic field strength of the solenoid on the current strength and the distance to it.

Baixar (32KB)
4. Fig. 3. Formation of the geometry of MF droplets of different concentrations depending on the magnetic field strength.

Baixar (198KB)
5. Fig. 4. Dependence of the elongation coefficient of a drop of magnetic fluid on the parameters of the magnetic fluids used and the magnetic field strength.

Baixar (42KB)
6. Figure from Table 3. 1

Baixar (14KB)
7. Figure from Table 3.2

Baixar (15KB)
8. Figure from Table 3.3

Baixar (14KB)
9. Figure from Table 3.4

Baixar (15KB)
10. Figure from Table 3.5

Baixar (15KB)
11. Figure from Table 3.6

Baixar (15KB)
12. Figure from Table 3. 7

Baixar (15KB)
13. Figure from Table 3.8

Baixar (15KB)
14. Figure from Table 3.9

Baixar (15KB)
15. Figure from Table 3. 10

Baixar (15KB)
16. Figure from Table 3. 11

Baixar (15KB)
17. Figure from Table 3. 12

Baixar (15KB)
18. Figure from Table 3. 13

Baixar (15KB)
19. Figure from Table 3. 14

Baixar (15KB)
20. Figure from Table 3. 15

Baixar (15KB)
21. Figure from Table 3. 16

Baixar (15KB)
22. Figure from Table 3. 17

Baixar (15KB)
23. Figure from Table 3. 18

Baixar (15KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024