Liquid-crystal composites of carbon nanotubes in a magnetic field: bridging from the molecular-statistical model to phenomenological theory

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Based on the thermodynamic potential of the molecular-statistical mean-field theory of liquid-crystal composites of carbon nanotubes, a representation of the free energy in the form of the Landau expansion is obtained. The resulting expansion is compared with the previously proposed phenomenological theories.

Sobre autores

D. Petrov

Perm State University

Autor responsável pela correspondência
Email: petrovda@bk.ru
Russia, 614990, Perm

Bibliografia

  1. Yadav S.P., Singh S. // Prog. Mater. Sci. 2016. V. 80. P. 38.
  2. Draude A.P., Dierking I. // Nano Express. 2021. V. 2. Art. No. 012002.
  3. Елецкий А.В. // УФН. 1997. Т. 167. № 9. С. 945; Eletskii A.V. // Phys. Usp. 1997. V. 40. No. 9. P. 899.
  4. Белоненко М.Б., Глазов С.Ю., Мещерякова Н.Е. // Изв. РАН. Сер. физ. 2009. Т. 73. № 12. С. 1709; Belonenko M.B., Glazov S.Yu., Meshcheryakova N.E. // Bull. Russ. Acad. Sci. Phys. 2009. V. 73. No. 12. P. 1601.
  5. Бабаев А.А., Алиев А.М., Теруков Е.И. и др. // Изв. РАН. Сер. физ. 2017. Т. 81. № 5. С. 684; Babaeva A.A., Alieva A.M., Terukov E.I. et al. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. No. 5. P. 623.
  6. Кононенко О.В., Матвеев В.Н., Касумов Ю.А. и др. // Изв. РАН. Сер. физ. 2010. Т. 74. № 7. С. 1032; Kononenkoa O.V., Matveeva V.N., Kasumov Yu.A. et al. // Bull. Russ. Acad. Sci. Phys. 2010. V. 74. No. 7. P. 991.
  7. de Gennes P.G., Prost J. The physics of liquid crystals. Oxford: Clarendon Press, 1993. 598 p.
  8. Петров Д.А., Захлевных А.Н., Манцуров А.В. // ЖЭТФ. 2018. Т. 154. № 2(8). С. 415; Petrov D.A., Zakhlevnykh A.N., Mantsurov A.V. // J. Exp. Theor. Phys. 2018. V. 127. No. 2. P. 357.
  9. Rusakov V.V., Shliomis M.I. // J. Physique Lett. 1985. V. 46. Art. No. L935.
  10. Katriel J., Kventsel G.F., Luckhurst G.R. et al. // Liq. Cryst. 1986. V. 1. P. 337.
  11. Luckhurst G.R., Naemura S., Sluckin T.J. et al. // Phys. Rev. E. 2012. V. 5. Art. No. 031705.
  12. Леонтович М.А. // ЖЭТФ. 1938. Т. 8. № 7. С. 844.
  13. van der Schoot P., Popa-Nita V., Kralj S. // J. Phys. Chem. B. 2008. V. 112. Art. No. 4512.
  14. Popa-Nita V., Kralj S. // J. Chem. Phys. 2010. V. 132. Art. No. 024902.
  15. Lahiri T., Pushkar S.K., Poddar P. // Physica B. 2020. V. 588. Art. No. 412177.
  16. Mukherjee P.K. // J. Mol. Liq. 2016. V. 220. P. 742.
  17. Солдатов Л.А., Кладенок Л.А., Ларин Е.С. и др. // Изв. РАН. Сер. физ. 2014. Т. 78. № 8. С. 953; Soldatov L.A., Kladenok L.A., Larin E.S. et al. // Bull. Russ. Acad. Sci. Phys. 2014. V. 78. No. 8. P. 726.
  18. Lopatina L.M., Selinger J.V. // Phys. Rev. Lett. 2009. V. 102. Art. No. 197802.
  19. Mukherjee P.K. // Soft Mater. 2020. V. 19. P. 113.
  20. Hölbl A., Pal K., Slavinec M., Kralj S. // Physica B. 2022. V. 642. Art. No. 414142.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Д.А. Петров, 2023