Metamagnetism of itinerant electrons in the Hubbard model for the fcc lattice caused by the van Hove singularity

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We investigated the itinerant metamagnetic phase transition in metals within the Hubbard model for a face-centered cubic lattice. The ratio of the transfer integral between the nearest and next-to-nearest neighbors is chosen to provide strong van Hove singularity in the density of states. The magnetic field dependencies of magnetization in the transition region are obtained, and the influence of model parameters on the character of the phenomenon is investigated.

Толық мәтін

Рұқсат жабық

Авторлар туралы

F. Vasilevskiy

Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences; Ural Federal University

Хат алмасуға жауапты Автор.
Email: fedorvasilevski@gmail.com
Ресей, Ekaterinburg; Ekaterinburg

P. Igoshev

Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Email: fedorvasilevski@gmail.com
Ресей, Ekaterinburg

V. Irkhin

Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

Email: fedorvasilevski@gmail.com
Ресей, Ekaterinburg

Әдебиет тізімі

  1. Wohlfarth E., Rhodes P. // Philos. Mag. 1962. V. 7. No. 83. P. 1817.
  2. Левитин Р.З., Маркосян А.С. // УФН. 1988. Т. 155. № 8. С. 623; Levitin R., Markosyan A.S. // Sov. Phys. Usp. 1988. V. 31. No. 8. P. 730.
  3. Shimizu M. // J. Physics. 1982. V. 43. No. 1. P. 155.
  4. Igoshev P.A., Irkhin V.Y. // Phys. Lett. A. 2022. V. 438. P. 128107.
  5. Игошев П.А., Ирхин В.Ю. // Письма в ЖЭТФ. 2019. Т. 110. № 11. С. 741; Igoshev P.A., Irkhin V.Y. // JETP Lett. 2019. V. 110. P. 727.
  6. Igoshev P.A., Irkhin V.Y. // Phys. Met. Metallogr. 2019. V. 120. P. 1282.
  7. Adachi K., Matsui M., Kawai M. // J. Phys. Soc. Japan. 1979. V. 46. No. 5. P. 1474.
  8. Mushnikov N.V., Goto T. // Phys. Met. Metallogr. 2002. V. 93. No. Suppl. 1. P. 88.
  9. Mushnikov N.V., Goto T. // J. Phys. Cond. Matter. 1999. V. 11. No. 41. P. 8095.
  10. Sakakibara T., Goto T., Yoshimura K. // Phys. Lett. A. 1986. V. 117. No. 5. P. 243.
  11. Goto T., Fukamichi K., Sakakibara T., Komatsu H. // Solid State Commun. 1989. V. 72. No. 9. P. 945.
  12. Aлександрян В.В., Лагутин А.С., Левитин Р.З. и др. // ЖЭТФ. 1985. T. 89. № 1. С. 271; Aleksandryan V., Lagutin A., Levitin R. et al. // Sov. Phys. JETP. 1985. V. 62. No. 1. P. 183.
  13. Габелко И.Л., Левитин Р.З., Маркосян А., Снегирев В. // Письма в ЖЭТФ. 1987. Т 45. № 7. С 360; Gabelko I., Levitin R., Markosyan A., Snegirev V. // JETP Lett. 1987. V. 45. No. 7. P. 458.
  14. Fukamichi K., Yokoyama T., Saito H. // Phys. Rev. B. 2001. V. 64. No. 13. Art. No. 134401.
  15. Mushnikov N.V., Goto T., Andreev A.V. et al. // Phys. Rev. B. 2002. V. 66. No. 6. Art. No. 064433.
  16. Yamada H., Mushnikov N.V., Goto T. // J. Phys. Chem. Solids. 2002. V. 63. No. 6-8. P. 1189.
  17. Mushnikov N.V. , Goto T., Kamishima K. et al. // Phys. Rev. B. 1999. V. 59. No. 10. P. 6877.
  18. Gama S., Coelho A.A., de Campos A. // Phys. Rev. Lett. 2004. V. 93. No. 23. Art. No. 237202.
  19. Pecharsky V.K., Gschneidner Jr K.A. // Phys. Rev. Lett. 1997. V. 78. No. 23. P. 4494.
  20. Tegus O., Brück E., Zhang L. // Phys. B. Cond. Matter. 2002. V. 319. No. 1–4. P. 174.
  21. Yamada H. // Phys. Rev. B. 1993. V. 47. No. 17. P. 11211.
  22. Goto T., Fukamichi K., Yamada H. // Phys. B. Cond. Matter. 2001. V. 300. No. 1–4. P. 167.
  23. Yamada H., Goto T. // Phys. Rev. B. 2003. V. 68. No. 18. Art. No. 184417.
  24. Goto T., Shindo Y., Takahashi H., Ogawa S. // Phys. Rev. B. 1997. V. 56. No. 21. P. 14019.
  25. Belitz D., Kirkpatrick T., Rollbühler J. // Phys. Rev. Lett. 2005. V. 94. No. 24. Art. No. 247205.
  26. Yamada H. // Phys. B. Cond. Matter. 2007. V. 391. No. 1. P. 42.
  27. Berridge A., Grigera S., Simons B., Green A. // Phys. Rev. B. 2010. V. 81. No. 5. Art. No. 054429.
  28. Wysokiński M.M., Abram M., Spalek J. // Phys. Rev. B. 2015. V. 91. No. 8. Art. No. 081108.
  29. Sandeman K., Lonzarich G., Schofield A. // Phys. Rev. Lett. 2003. V. 90. No. 16. Art. No. 167005.
  30. Berridge A. // Phys. Rev. B. 2011. V. 83. No. 23. Art. No. 235127.
  31. Yamase H. // New J. Phys. 2023. V. 25. No. 3. Art. No. 033004.
  32. Igoshev P., Katanin A. // Phys. Rev. B. 2023. V. 107. No. 11. Art. No. 115105.
  33. Neznakhin D.S., Radzivonchik D.I., Gorbunov D.I. et al. // Phys. Rev. B. 2020. V. 101. No. 22. Art. No. 224432.
  34. Radzivonchik D.I., Neznakhin D.S., Lukoyanov A.V. // J. Phys. Chem. Solids. 2022. V. 163. Art. No. 110552.
  35. Mория T. Спиновые флуктуации в магнетиках с коллективизированными электронами. М: Мир, 1988. 287 с.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Density of states ρ(𝜖) at τ = −0.52. The vertical lines limit the region where the metamagnetic transition is observed at 𝑈 = 1.50 𝑡. The inset shows the region of the density of states where metamagnetism was considered.

Жүктеу (13KB)
3. Fig. 2. Dependences of magnetization on the magnetic field at different concentration values at 𝑈 = 1.50 𝑡, 𝑇 = 2⋅10−4𝑡 for τ = −0.52. The dotted line indicates the curve corresponding to the value of 𝑛, at which the Stoner criterion (14) is satisfied. To estimate the magnitude of the magnetic field, the band width 𝑊 = 18𝑡 was chosen equal to 5 eV.

Жүктеу (21KB)
4. Fig. 3. Phase diagram in variables ℎс − 𝑛 and Δ𝑚 − 𝑛 𝑈 = 1.50𝑡, 𝑇 = 2⋅10−4𝑡, the solid line separates the two phases, the paramagnetic one is below, the ferromagnetic one is above.

Жүктеу (12KB)
5. Fig. 4. Phase diagram in variables U − 𝑛 at 𝑇 = 2⋅10−4𝑡 for τ = −0.52. The red lines limit the region of band metamagnetism, the black dotted line indicates the Stoner criterion (14), where 𝐸F is taken for the paramagnetic phase for a given 𝑛.

Жүктеу (12KB)

© Russian Academy of Sciences, 2024