High Dynamic Range Retarding Potential Analyzer Operation Verification

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Probe diagnostics of ion energy distribution and ion current density in the plasma plume of electricpropulsion is considered. A detailed numerical and experimental comparison is presented of a new, highdynamic range retarding potential analyzer (HDR RPA) and a conventional gridded RPA probe applied to aplume of a hall effect thruster (HET) operating in different modes. Simulations show the disadvantages of thegridded retarding potential analyzer design and the advantages of the HDR RPA. By means of numericalmodeling, the peculiarities of using the HDR RPA are also investigated in detail and preliminary conclusionsregarding the probe accuracy are drawn. The final part of the paper shows the results of joint tests of the twoprobes at those plasma parameters where the gridded probe works most accurately, with a confirmed maximumerror of 5%.

Толық мәтін

Рұқсат жабық

Авторлар туралы

D. Maystrenko

Keldysh Research Center; Moscow Institute of Physics and Technology

Хат алмасуға жауапты Автор.
Email: maystrenko.da@phystech.edu
Ресей, Moscow, 125438; Moscow, 141701

A. Shagayda

Keldysh Research Center

Email: maystrenko.da@phystech.edu
Ресей, Moscow, 125438

D. Tomilin

Keldysh Research Center

Email: maystrenko.da@phystech.edu
Ресей, Moscow, 125438

D. Kravchenko

Keldysh Research Center

Email: maystrenko.da@phystech.edu
Ресей, Moscow, 125438

M. Selivanov

Keldysh Research Center

Email: maystrenko.da@phystech.edu
Ресей, Moscow, 125438

Әдебиет тізімі

  1. Lev D., Myers R.M., Lemmer K.M., Kolbeck J., Koizumi H., Polzin K. // Acta Astronaut. 2019. V. 159. P. 213.
  2. Levchenko I., Xu S., Mazouffre S., Lev D., Pedrini D., Goebel D., Garrigues L., Taccogna F., Bazaka K. // Phys. Plasmas. 2020. V. 27. P. 020601.
  3. Gong S., Li J. // Sci. China Phys., Mechanics Astron. 2014. V. 57. P. 521531.
  4. Dale E., Jorns B., Gallimore A. // Aerospace. 2020. V. 7. P. 120.
  5. Gorshkov O.A., Shagayda A.A. // Tech. Phys. Lett. 2008. V. 34. P. 153.
  6. Trottenberg T., Bansemer F., Böttcher S., Feili D., Henkel H., Hesse M., Kersten H., Krüger T., Laube J., Lazurenko A., Sailer D., Schuster B., Seimetz L., Spethmann A., Weis S., Wimmer-Schweingruber R.F. // EPJ Techniques and Instrumentation. 2021. V. 8. P. 16.
  7. Hutchinson H. Principles of Plasma Diagnostics. Cambridge: Cambridge Univ. Press, 1987.
  8. Ya-li M., Fu-jun T., Yu-xiong X., Yi-feng C., Xin G., Yi W., Kai T., Ze-dong Y. // Int. J. Mech., Aerosp., Ind., Mechatron. Manuf. Eng. 2012. V. 6. P. 11.
  9. Heubel E.V. Enhancing Retarding Potential Analyzer Energy Measurements with Micro-Aligned Electrodes. Massachusetts Institute of Technology, 2021.
  10. Zhang Z., Tang H., Zhang Z., Wang J., Cao Sh. // Rev. Sci. Instrum. 2016. V. 87. P. 123510.
  11. Lemmer K.M., Gallimore A.D., Smith T.B., Austin D.R. // IEPC-2007-161, 30th Internat. Electric Propulsion Confer., 2007.
  12. Harmann H., Koch N., Kornfeld G. // IEPC-2007-119, Internat. Electric Propulsion Confer., 2007
  13. Hey F.G., Vaupel M., Groll C., Braxmaier C., Tajmar M., Sell A., Eckert K., Weise D., Saks N., Johann U. // IEPC-2017-271, 35th Internat. Electric Propulsion Confer., Atlanta, GA, 2017.
  14. Maystrenko D., Shagayda A., Kravchenko D., Lovtsov A. // Rev. Sci. Instrum. 2022. V. 93. P. 073504.
  15. Goebel D.M., Katz I. Fundamentals of Electric Propulsion: Ion and Hall Thrusters. Jet Propulsion Laboratory California Institute of Technology, 2008.
  16. Shagayda A., Nikitin V., Tomilin D. // Vacuum. 2016. V. 123. P. 140.
  17. Goebel D. M., Becatti G. // Rev. Sci. Instrum. 2021. V. 92. P. 013511.
  18. Tomilin D., Lovtsov A. // Electric Propulsion Confer., University of Vienna, Vienna, Austria September 15–20, 2019. IEPC-2019-342.
  19. Walker M.L.R., Hofer R.R., Gallimore A.D. // J. Propulsion Power. 2016. V. 22. P. 205.
  20. Azziz Y., Martinez-Sanchez M. Experimental and Theoretical Characterization of a Hall Thruster Plume. Massachusetts Institute of Technology, 2007.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Scheme of the aperture probe.

Жүктеу (162KB)
3. Fig. 2. Schematic diagram of a three-grid probe.

Жүктеу (74KB)
4. Fig. 3. Model of a three-grid probe.

Жүктеу (104KB)
5. Fig. 4. Results of modeling the operation of a three-grid probe in a HD plasma with the most probable ion energy: 470 eV (a), 810 eV (b).

Жүктеу (367KB)
6. Fig. 5. Illustration of the influence of space charge: ion trajectories (a); potential distribution in the probe under the influence of space charge and in the absence of space charge (b).

Жүктеу (192KB)
7. Fig. 6. Illustration of incorrect operation of the probe in a jet with low current density: ion trajectories (a), potential distribution in grid cells (b) and (c).

Жүктеу (237KB)
8. Fig. 7. Illustration of secondary electron emission in a three-grid probe.

Жүктеу (58KB)
9. Fig. 8. Results of modeling the operation of an aperture probe.

Жүктеу (238KB)
10. Fig. 9. Optimal focusing (a), too strong (b) and too weak focusing (c).

Жүктеу (467KB)
11. Fig.10. Optimum accelerating potential depending on current density for different ion energies.

Жүктеу (124KB)
12. Fig.11. Defocusing of reflected ions.

Жүктеу (280KB)
13. Fig.12. Dependence of collector and electrode currents on the collector potential in the aperture probe.

Жүктеу (108KB)
14. Fig.13. Dependence of collector current on accelerating potential.

Жүктеу (111KB)
15. Fig.14. Dependence of collector current on accelerating potential.

Жүктеу (111KB)
16. Fig.15. Energy spectrum obtained by an aperture probe at different accelerating potentials.

Жүктеу (128KB)
17. Fig.16. Dependence of collector current on collector potential with measurement of negative currents.

Жүктеу (103KB)
18. Fig.17. Experiment setup.

Жүктеу (49KB)
19. Fig.18. Distribution of current density in the jet.

Жүктеу (133KB)
20. Fig. 19. Energy spectra in the center of the jet at a discharge voltage of 300 V at angles of 0 and 15° to the engine axis.

Жүктеу (192KB)
21. Fig. 20. Energy spectra in the center of the jet at a discharge voltage of 900 V at angles of 0 and 15° to the engine axis.

Жүктеу (184KB)
22. Fig. 21. Measurements at a discharge voltage of 300 V, 45 and 60° to the axis.

Жүктеу (218KB)
23. Fig. 22. Measured energy spectra at a discharge voltage of 900 V at angles of 45 and 60° to the axis.

Жүктеу (220KB)
24. Fig. 23. Current dependences on the collector for multi-grid (bottom) and aperture probes (top).

Жүктеу (186KB)
25. Fig. 24. Energy spectra at 80°.

Жүктеу (184KB)
26. Fig. 25. Measured energy spectra at a discharge voltage of 300 V and a distance of 0.5 m to the engine.

Жүктеу (168KB)

© Russian Academy of Sciences, 2024