Биотехнологии устойчивости растений к вирусам: CRISPR-Cas или РНК-интерференция
- Авторы: Калинина Н.О.1,2, Спеченкова Н.А.1, Тальянский М.Э.1
-
Учреждения:
- Институт биоорганической химии имени академиков М.М. Шемякина и Ю.А. Овчинникова РАН
- НИИ физико-химической биологии имени А.Н. Белозерского, Московский государственный университет имени М.В. Ломоносова
- Выпуск: Том 90, № 6 (2025)
- Страницы: 867 – 883
- Раздел: Статьи
- URL: https://rjsvd.com/0320-9725/article/view/688068
- DOI: https://doi.org/10.31857/S0320972525060104
- EDN: https://elibrary.ru/JDJABP
- ID: 688068
Цитировать
Полный текст



Аннотация
Разработанные в последнее время генетические технологии редактирования генома CRISPR-Cas и РНК-интерференция (РНКи) уже привели к заметному прогрессу практически во всех областях науки о жизни, включая биотехнологию и медицину, и в настоящее время становятся все более популярными в биологии растений. В данном обзоре мы описываем основные принципы работы этих двух технологий и методы их применения на модельных растениях и сельскохозяйственных культурах для контроля вирусных заболеваний. Приводятся примеры антивирусного действия этих технологий, направленного на прямое подавление вирусных геномов ДНК- и РНK-содержащих вирусов, а также на подавление активности генов растения-хозяина, повышающих восприимчивость к вирусам. Обзор содержит детальное сравнение эффективности применения технологий CRISPR-Cas и РНКи в защите растений от вирусов. Подробно обсуждаются преимущества и недостатки данных технологий, также рассматриваются факторы, ограничивающие использованиe этих технологий на практике, и обсуждаются возможные подходы для их преодоления.
Ключевые слова
Полный текст

Об авторах
Н. О. Калинина
Институт биоорганической химии имени академиков М.М. Шемякина и Ю.А. Овчинникова РАН; НИИ физико-химической биологии имени А.Н. Белозерского, Московский государственный университет имени М.В. Ломоносова
Автор, ответственный за переписку.
Email: kalinina@belozersky.msu.ru
Россия, 117997 Москва; 119234 Москва
Н. А. Спеченкова
Институт биоорганической химии имени академиков М.М. Шемякина и Ю.А. Овчинникова РАН
Email: kalinina@belozersky.msu.ru
Россия, 117997 Москва
М. Э. Тальянский
Институт биоорганической химии имени академиков М.М. Шемякина и Ю.А. Овчинникова РАН
Email: kalinina@belozersky.msu.ru
Россия, 117997 Москва
Список литературы
- Tatineni, S., and Hein, G. L. (2023) Plant viruses of agricultural importance: current and future perspectives of virus disease management strategies, Phytopathology, 113, 117-141, https://doi.org/10.1094/PHYTO-05-22-0167-RVW.
- Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., and Daszak, P. (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers, Trends Ecol. Evol., 19, 535-544, https://doi.org/10.1016/j.tree.2004.07.021.
- Lacomme, C., Pickup, J., Fox, A., Glais, L., Dupuis, B., Steinger, T., Rolot, J., Valkonen, J. P. T., Kruger, K., Nie, X., Modic, S., Mehle, N., Ravnikar, M., and Hullé, M. (2017) Transmission and epidemiology of Potato virus Y, In Potato virus Y: biodiversity, pathogenicity, epidemiology and management (Lacomme, C., Glais, L., Bellstedt, D. U., Dupuis, B., Karasev, A. V., et al., eds) pp. 141-176, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-58860-5_6.
- Van Esse, H. P., Reuber, T. L., and van der Does, D. (2020) Genetic modification to improve disease resistance in crops, New Phytol., 225, 70-86, https://doi.org/10.1111/nph.15967.
- Rubio, L., Galipienso, L., and Ferriol, I. (2020) Detection of plant viruses and disease management: relevance of genetic diversity and evolution, Front. Plant Sci., 11, 1092, https://doi.org/10.3389/fpls.2020.01092.
- Cillo, F., and Palukaitis, P. (2014) Chapter two – transgenic resistance, In Advances in Virus Research (Loebenstein, G., and Katis, N., eds) pp. 35-146, Academic Press, https://doi.org/10.1016/B978-0-12-801246-8.00002-0.
- Sudarshana, M. R., Roy, G., and Falk, B. W. (2007) Methods for engineering resistance to plant viruses, Methods Mol. Biol., 354, 183-195, https://doi.org/10.1385/1-59259-966-4:183.
- Reddy, D. V. R., Sudarshana, M. R., Fuchs, M., Rao, N. C., and Thottappilly, G. (2009) Chapter 6 – genetically engineered virus-resistant plants in developing countries: current status and future prospects, In Advances in Virus Research (Loebenstein, G., and Carr, J. P., eds) pp. 185-220, Academic Press, https://doi.org/10.1016/ S0065-3527(09)07506-X.
- Palukaitis, P. (2012) Resistance to viruses of potato and their vectors, Plant Pathol. J., 28, 248-258, https://doi.org/10.5423/PPJ.RW.06.2012.0075.
- Arif, M., Azhar, U., Arshad, M., Zafar, Y., Mansoor, S., and Asad, S. (2012) Engineering broad-spectrum resistance against RNA viruses in potato, Transgen. Res., 21, 303-311, https://doi.org/10.1007/s11248-011-9533-7.
- Duffy, S. (2018) Why are RNA virus mutation rates so damn high? PLoS Biol., 16, e3000003, https://doi.org/10.1371/journal.pbio.3000003.
- Kalinina, N. O., Khromov, A., Love, A. J., and Taliansky, M. E. (2020) CRISPR applications in plant virology: virus resistance and beyond, Phytopathology, 110, 18-28, https://doi.org/10.1094/PHYTO-07-19-0267-IA.
- Zhao, Y., Yang, X., Zhou, G., and Zhang, T. (2020) Engineering plant virus resistance: from RNA silencing to genome editing strategies, Plant Biotechnol. J., 18, 328-336, https://doi.org/10.1111/pbi.13278.
- Cao, Y., Zhou, H., Zhou, X., and Li, F. (2020) Control of plant viruses by CRISPR/Cas system-mediated adaptive immunity, Front. Microbiol., 11, 593700, https://doi.org/10.3389/fmicb.2020.593700.
- Chattopadhyay, R., Firdous, Z., and Bari, V. K. (2025) CRISPR/Cas9 and its derivatives to improve crop biotic stress resistance: current status and prospects, Physiol. Mol. Plant Pathol., 135, 102482, https://doi.org/10.1016/ j.pmpp.2024.102482.
- Jeyaraj, G., Alphonse, V., Jayanthi, P., Angelin, F. N., Geetanjali, A. S., and Govindan, G. (2024) Harnessing the potential of CRISPR/Cas system for enhancing virus resistance in plants: targets, strategies, and challenges, Physiol. Mol. Plant Pathol., 129, 102202, https://doi.org/10.1016/j.pmpp.2023.102202.
- Taliansky, M., Samarskaya, V., Zavriev, S. K., Fesenko, I., Kalinina, N. O., and Love, A. J. (2021) RNA-based technologies for engineering plant virus resistance, Plants, 10, 82, https://doi.org/10.3390/plants10010082.
- Venu, E., Ramya, A., Babu, P. L., Srinivas, B., Kumar, S., Reddy, N. K., Babu, Y. M., Majumdar, A., and Manik, S. (2025) Exogenous dsRNA-mediated RNAi: mechanisms, applications, delivery methods and challenges in the induction of viral disease resistance in plants, Viruses, 17, 49, https://doi.org/10.3390/v17010049.
- Collinge, D. B., Jørgensen, H. J. L., Lund, O. S., and Lyngkjær, M. F. (2010) Engineering pathogen resistance in crop plants: current trends and future prospects, Annu. Rev. Phytopathol., 48, 269-291, https://doi.org/10.1146/annurev-phyto-073009-114430.
- Thompson, J. R., and Tepfer, M. (2010) Chapter 2 – assessment of the benefits and risks for engineered virus resistance, In Advances in Virus Research (Carr, J. P., and Loebenstein, G., eds) pp. 33-56, Academic Press, https://doi.org/10.1016/S0065-3527(10)76002-4.
- Wang, M.-B., Masuta, C., Smith, N. A., and Shimura, H. (2012) RNA silencing and plant viral diseases, Mol. Plant Microbe Interact., 25, 1275-1285, https://doi.org/10.1094/MPMI-04-12-0093-CR.
- Morozov, S. Yu., Solovyev, A. G., Kalinina, N. O., and Taliansky, M. (2019) Double-stranded RNAs in plant protection against pathogenic organisms and viruses in agriculture, Acta Naturae, 11, 13-21, https://doi.org/10.32607/ 20758251-2019-11-4-13-21.
- Zhang, B., Li, W., Zhang, J., Wang, L., and Wu, J. (2019) Roles of small RNAs in virus-plant interactions, Viruses, 11, 827, https://doi.org/10.3390/v11090827.
- Taning, C. N., Arpaia, S., Christiaens, O., Dietz-Pfeilstetter, A., Jones, H., Mezzetti, B., Sabbadini, S., Sorteberg, H., Sweet, J., Ventura, V., and Smagghe, G. (2020) RNA-based biocontrol compounds: current status and perspectives to reach the market, Pest Manag. Sci., 76, 841-845, https://doi.org/10.1002/ps.5686.
- Zhan, X., Zhang, F., Li, N., Xu, K., Wang, X., Gao, S., Yin, Y., Yuan, W., Chen, W., Ren, Z., Yao, M., and Wang, F. (2024) CRISPR/Cas: an emerging toolbox for engineering virus resistance in plants, Plants, 13, 3313, https://doi.org/10.3390/plants13233313.
- Makarova, S. S., Khromov, A. V., Spechenkova, N. A., Taliansky, M. E., and Kalinina, N. O. (2018) Application of the CRISPR/Cas system for generation of pathogen-resistant plants, Biochemistry (Moscow), 83, 1552-1562, https://doi.org/10.1134/S0006297918120131.
- Bhaya, D., Davison, M., and Barrangou, R. (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation, Annu. Rev. Genet., 45, 273-297, https://doi.org/10.1146/annurev-genet-110410-132430.
- Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., and Church, G. M. (2013) RNA-guided human genome engineering via Cas9, Science, 339, 823-826, https://doi.org/10.1126/science.1232033.
- Mahas, A., and Mahfouz, M. (2018) Engineering virus resistance via CRISPR-Cas systems, Curr. Opin. Virol., 32, 1-8, https://doi.org/10.1016/j.coviro.2018.06.002.
- Kis, A., Hamar, É., Tholt, G., Bán, R., and Havelda, Z. (2019) Creating highly efficient resistance against wheat dwarf virus in barley by employing CRISPR/Cas9 system, Plant Biotechnol. J., 17, 1004-1006, https://doi.org/ 10.1111/pbi.13077.
- Liu, H., Soyars, C. L., Li, J., Fei, Q., He, G., Peterson, B. A., Meyers, B. C., Nimchuk, Z. L., and Wang, X. (2018) CRISPR/Cas9-mediated resistance to cauliflower mosaic virus, Plant Direct, 2, e00047, https://doi.org/10.1002/pld3.47.
- Zhang, T., Zheng, Q., Yi, X., An, H., Zhao, Y., Ma, S., and Zhou, G. (2018) Establishing RNA virus resistance in plants by harnessing CRISPR immune system, Plant Biotechnol. J., 16, 1415-1423, https://doi.org/10.1111/pbi.12881.
- Zhang, T., Zhao, Y., Ye, J., Cao, X., Xu, C., Chen, B., An, H., Jiao, Y., Zhang, F., Yang, X., and Zhou, G. (2019) Establishing CRISPR/Cas13a immune system conferring RNA virus resistance in both dicot and monocot plants, Plant Biotechnol. J., 17, 1185, https://doi.org/10.1111/pbi.13095.
- Bastet, A., Robaglia, C., and Gallois, J.-L. (2017) eIF4E resistance: natural variation should guide gene editing, Trends Plant Sci., 22, 411-419, https://doi.org/10.1016/j.tplants.2017.01.008.
- Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., Sherman, A., Arazi, T., and Gal-On, A. (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology, Mol. Plant Pathol., 17, 1140-1153, https://doi.org/10.1111/mpp.12375.
- Macovei, A., Sevilla, N. R., Cantos, C., Jonson, G. B., Slamet-Loedin, I., Čermák, T., Voytas, D. F., Choi, I. R., and Chadha-Mohanty, P. (2018) Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus, Plant Biotechnol. J., 16, 1918-1927, https://doi.org/10.1111/pbi.12927.
- Gomez, M. A., Lin, Z. D., Moll, T., Chauhan, R. D., Hayden, L., Renninger, K., Beyene, G., Taylor, N. J., Carrington, J. C., Staskawicz, B. J., and Bart, R. S. (2019) Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence, Plant Biotechnol. J., 17, 421-434, https://doi.org/10.1111/pbi.12987.
- Pyott, D. E., Sheehan, E., and Molnar, A. (2016) Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants, Mol. Plant Pathol., 17, 1276-1288, https://doi.org/10.1111/mpp.12417.
- Bastet, A., Zafirov, D., Giovinazzo, N., Guyon-Debast, A., Nogué, F., Robaglia, C., and Gallois, J. (2019) Mimicking natural polymorphism in eIF4E by CRISPR-Cas9 base editing is associated with resistance to potyviruses, Plant Biotechnol. J., 17, 1736-1750, https://doi.org/10.1111/pbi.13096.
- Pramanik, D., Shelake, R. M., Park, J., Kim, M. J., Hwang, I., Park, Y., and Kim, J. (2021) CRISPR/Cas9-mediated generation of pathogen-resistant tomato against tomato yellow leaf curl virus and powdery mildew, Int. J. Mol. Sci., 22, 1878, https://doi.org/10.3390/ijms22041878.
- Sun, H., Shen, L., Qin, Y., Liu, X., Hao, K., Li, Y., Wang, J., Yang, J., and Wang, F. (2018) CLC-Nt1 affects Potato Virus Y infection via regulation of endoplasmic reticulum luminal Ph, New Phytol., 220, 539-552, https://doi.org/ 10.1111/nph.15310.
- Makhotenko, A. V., Khromov, A. V., Snigir, E. A., Makarova, S. S., Makarov, V. V., Suprunova, T. P., Kalinina, N. O., and Taliansky, M. E. (2019) Functional analysis of coilin in virus resistance and stress tolerance of potato solanum tuberosum using CRISPR-Cas9 editing, Doklady Biochem. Biophys., 484, 88-91, https://doi.org/10.1134/S1607672919010241.
- Sekine, K.-T., Nandi, A., Ishihara, T., Hase, S., Ikegami, M., Shah, J., and Takahashi, H. (2004) Enhanced resistance to Cucumber mosaic virus in the Arabidopsis thaliana ssi2 mutant is mediated via an SA-independent mechanism, Mol. Plant Microbe Interact., 17, 623-632, https://doi.org/10.1094/MPMI.2004.17.6.623.
- Bortesi, L., and Fischer, R. (2015) The CRISPR/Cas9 system for plant genome editing and beyond, Biotechnol. Adv., 33, 41-52, https://doi.org/10.1016/j.biotechadv.2014.12.006.
- Wolter, F., and Puchta, H. (2018) The CRISPR/Cas revolution reaches the RNA world: Cas13, a new Swiss Army knife for plant biologists, Plant J., 94, 767-775, https://doi.org/10.1111/tpj.13899.
- Khromov, A., Makhotenko, A. V., Snigir, E. V., Makarova, S. S., Makarov, V., Suprunova, T., Miroshnichenko, D., Kalinina, N. O., Dolgov, S., and Taliansky, M. E. (2018) Delivery of CRISPR/Cas9 ribonucleoprotein complex to apical meristem cells for DNA-free editing of potato solanum tuberosum genome, Biotekhnologiya, 34, 51-58, https://doi.org/10.21519/0234-2758-2018-34-6-51-58.
- Khromov, A. V., Makhotenko, A. V., Makarova, S. S., Suprunova, T. P., Kalinina, N. O., and Taliansky, M. E. (2020) Delivery of CRISPR/Cas9 ribonucleoprotein complex into plant apical meristem cells leads to large deletions in an editing gene, Russ. J. Bioorg. Chem., 46, 1242-1249, https://doi.org/10.1134/S1068162020060138.
- Kosicki, M., Tomberg, K., and Bradley, A. (2018) Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements, Nat. Biotechnol., 6, 765-771, https://doi.org/10.1038/nbt.4192.
- East-Seletsky, A., O’Connell, M. R., Knight, S. C., Burstein, D., Cate, J. H. D., Tjian, R., and Doudna, J. A. (2016) Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection, Nature, 538, 270-273, https://doi.org/10.1038/nature19802.
- Gootenberg, J. S., Abudayyeh, O. O., Kellner, M. J., Joung, J., Collins, J. J., and Zhang, F. (2018) Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6, Science, 360, 439-444, https://doi.org/10.1126/science.aaq0179.
- Sanford, J. C., and Johnston, S. A. (1985) The concept of parasite-derived resistance – deriving resistance genes from the parasite’s own genome, J. Theor. Biol., 113, 395-405, https://doi.org/10.1016/S0022-5193(85)80234-4.
- Kumar, G., Jyothsna, M., Valarmathi, P., Roy, S., Banerjee, A., Tarafdar, J., Senapati, B. K., Robin, S., Manonmani, S., Rabindran, R., and Dasgupta, I. (2019) Assessment of resistance to rice tungro disease in popular rice varieties in India by introgression of a transgene against Rice tungro bacilliform virus, Arch. Virol., 164, 1005-1013, https://doi.org/10.1007/s00705-019-04159-3.
- Baulcombe, D. C. (2022) The role of viruses in identifying and analyzing RNA silencing, Annu. Rev. Virol., 9, 353-373, https://doi.org/10.1146/annurev-virology-091919-064218.
- Lopez-Gomollon, S., and Baulcombe, D. C. (2022) Roles of RNA silencing in viral and non-viral plant immunity and in the crosstalk between disease resistance systems, Nat. Rev. Mol. Cell Biol., 23, 645-662, https://doi.org/10.1038/s41580-022-00496-5.
- Das, P. R., and Sherif, S. M. (2020) Application of exogenous dsRNAs-induced RNAi in agriculture: challenges and triumphs, Front. Plant Sci., 11, 946, https://doi.org/10.3389/fpls.2020.00946.
- Dubrovina, A. S., and Kiselev, K. V. (2019) Exogenous RNAs for gene regulation and plant resistance, Int. J. Mol. Sci., 20, 2282, https://doi.org/10.3390/ijms20092282.
- Hernández-Soto, A., and Chacón-Cerdas, R. (2021) RNAi crop protection advances, Int. J. Mol. Sci., 22, 12148, https://doi.org/10.3390/ijms222212148.
- Rêgo-Machado, C. M., Inoue-Nagata, A. K., and Nakasu, E. Y. T. (2023) Topical application of dsRNA for plant virus control: a review, Tropical Plant Pathol., 48, 11-22, https://doi.org/10.1007/s40858-022-00534-9.
- Necira, K., Makki, M., Sanz-García, E., Canto, T., Djilani-Khouadja, F., and Tenllado, F. (2021) Topical application of Escherichia coli-encapsulated dsRNA induces resistance in Nicotiana benthamiana to potato viruses and involves RDR6 and combined activities of DCL2 and DCL4, Plants, 10, 644, https://doi.org/10.3390/ plants10040644.
- Delgado-Martín, J., Ruiz, L., Janssen, D., and Velasco, L. (2022) Exogenous application of dsRNA for the control of viruses in cucurbits, Front. Plant Sci., 13, 895953, https://doi.org/10.3389/fpls.2022.895953.
- Nityagovsky, N. N., Kiselev, K. V., Suprun, A. R., and Dubrovina, A. S. (2022) Exogenous dsRNA induces RNA interference of a chalcone synthase gene in Arabidopsis thaliana, Int. J. Mol. Sci., 23, 5325, https://doi.org/10.3390/ijms23105325.
- Mitter, N., Worrall, E. A., Robinson, K. E., Li, P., Jain, R. G., Taochy, C., Fletcher, S. J., Carroll, B. J., Lu, G. Q., and Xu, Z. P. (2017) Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses, Nat. Plants, 3, 1-10, https://doi.org/10.1038/nplants.2016.207.
- Tabein, S., Jansen, M., Noris, E., Vaira, A. M., Marian, D., Behjatnia, S. A. A., Accotto, G. P., and Miozzi, L. (2020) The induction of an effective dsRNA-mediated resistance against tomato spotted wilt virus by exogenous application of double-stranded RNA largely depends on the selection of the viral RNA target region, Front. Plant Sci., 11, 533338, https://doi.org/10.3389/fpls.2020.533338.
- Rego-Machado, C. M., Nakasu, E. Y. T., Silva, J. M. F., Lucinda, N., Nagata, T., and Inoue-Nagata, A. K. (2020) siRNA biogenesis and advances in topically applied dsRNA for controlling virus infections in tomato plants, Sci. Rep., 10, 22277, https://doi.org/10.1038/s41598-020-79360-5.
- Konakalla, N. C., Bag, S., Deraniyagala, A. S., Culbreath, A. K., and Pappu, H. R. (2021) Induction of plant resistance in tobacco (Nicotiana tabacum) against tomato spotted wilt orthotospovirus through foliar application of dsRNA, Viruses, 13, 662, https://doi.org/10.3390/v13040662.
- Samarskaya, V. O., Spechenkova, N., Markin, N., Suprunova, T. P., Zavriev, S. K., Love, A. J., Kalinina, N. O., and Taliansky, M. E. (2022) Impact of exogenous application of potato virus Y-specific dsRNA on RNA interference, pattern-triggered immunity and poly(ADP-ribose) metabolism, Int. J. Mol. Sci., 23, 7915, https://doi.org/10.3390/ijms23147915.
- Samarskaya, V. O., Spechenkova, N., Ilina, I., Suprunova, T. P., Kalinina, N. O., Love, A. J., and Taliansky, M. E. (2023) A non-canonical pathway induced by externally applied virus-specific dsRNA in potato plants, Int. J. Mol. Sci., 24, 15769, https://doi.org/10.3390/ijms242115769.
- Niehl, A., Wyrsch, I., Boller, T., and Heinlein, M. (2016) Double-stranded RNAs induce a pattern-triggered immune signaling pathway in plants, New Phytol., 211, 1008-1019, https://doi.org/10.1111/nph.13944.
- Niehl, A., and Heinlein, M. (2019) Perception of double-stranded RNA in plant antiviral immunity, Mol. Plant Pathol., 20, 1203-1210, https://doi.org/10.1111/mpp.12798.
- Chow, K. T., Gale, M., and Loo, Y.-M. (2018) RIG-I and other RNA sensors in antiviral immunity, Annu. Rev. Immunol., 36, 667-694, https://doi.org/10.1146/annurev-immunol-042617-053309.
- Hartmann, G. (2017) Nucleic acid immunity, Adv. Immunol., 133, 121-169, https://doi.org/10.1016/bs.ai.2016.11.001.
- Lee, B., Park, Y.-S., Lee, S., Song, G. C., and Ryu, C.-M. (2016) Bacterial RNAs activate innate immunity in Arabidopsis, New Phytol., 209, 785-797, https://doi.org/10.1111/nph.13717.
- Kørner, C. J., Klauser, D., Niehl, A., Domínguez-Ferreras, A., Chinchilla, D., Boller, T., Heinlein, M., and Hann, D. R. (2013) The immunity regulator BAK1 contributes to resistance against diverse RNA viruses, Mol. Plant Microbe Int., 26, 1271-1280, https://doi.org/10.1094/MPMI-06-13-0179-R.
- Zvereva, A. S., Golyaev, V., Turco, S., Gubaeva, E. G., Rajeswaran, R., Schepetilnikov, M. V., Srour, O., Ryabova, L. A., Boller, T., and Pooggin, M. M. (2016) Viral protein suppresses oxidative burst and salicylic acid-dependent autophagy and facilitates bacterial growth on virus-infected plants, New Phytol., 211, 1020-1034, https://doi.org/10.1111/nph.13967.
- Necira, K., Contreras, L., Kamargiakis, E., Kamoun, M. S., Canto, T., and Tenllado, F. (2024) Comparative analysis of RNA interference and pattern-triggered immunity induced by dsRNA reveals different efficiencies in the antiviral response to potato virus X, Mol. Plant Pathol., 25, e70008, https://doi.org/10.1111/mpp.70008.
- Spechenkova, N., Kalinina, N. O., Zavriev, S. K., Love, A. J., and Taliansky, M. (2023) ADP-ribosylation and antiviral resistance in plants, Viruses, 15, 241, https://doi.org/10.3390/v15010241.
- Vainonen, J. P., Shapiguzov, A., Vaattovaara, A., and Kangasjärvi, J. (2016) Plant PARPs, PARGs and PARP-like proteins, Curr. Protein Peptide Sci., 17, 713-723, https://doi.org/10.2174/1389203717666160419144721.
- Betting, V., and Van Rij, R. P. (2020) Countering counter-defense to antiviral RNAi, Trends Microbiol., 28, 600-602, https://doi.org/10.1016/j.tim.2020.05.018.
- Bennett, M., Deikman, J., Hendrix, B., and Iandolino, A. (2020) Barriers to efficient foliar uptake of dsRNA and molecular barriers to dsRNA activity in plant cells, Front. Plant Sci., 11, https://doi.org/10.3389/fpls. 2020.00816.
- Hoang, B. T. L., Fletcher, S. J., Brosnan, C. A., Ghodke, A. B., Manzie, N., and Mitter, N. (2022) RNAi as a foliar spray: efficiency and challenges to field applications, Int. J. Mol. Sci., 23, 6639, https://doi.org/10.3390/ijms23126639.
- Dalakouras, A., Wassenegger, M., Dadami, E., Ganopoulos, I., Pappas, M. L., and Papadopoulou, K. (2020) Genetically modified organism-free RNA interference: exogenous application of RNA molecules in plants, Plant Physiol., 182, 38-50, https://doi.org/10.1104/pp.19.00570.
- AgroSpheres, URL: https://www.agrospheres.com/.
- Hough, J., Howard, J. D., Brown, S., Portwood, D. E., Kilby, P. M., and Dickman, M. J. (2022) Strategies for the production of dsRNA biocontrols as alternatives to chemical pesticides, Front. Bioeng. Biotechnol., 10, 980592, https://doi.org/10.3389/fbioe.2022.980592.
- GreenLight Biosciences, URL: https://www.greenlightbiosciences.com/.
- Johansen, I. E., Liu, Y., Jørgensen, B., Bennett, E. P., Andreasson, E., Nielsen, K. L., Blennow, A., and Petersen, B. L. (2019) High efficacy full allelic CRISPR/Cas9 gene editing in tetraploid potato, Sci. Rep., 9, 17715, https://doi.org/10.1038/s41598-019-54126-w.
- Ali, Z., Ali, S., Tashkandi, M., Zaidi, S. S.-A., and Mahfouz, M. M. (2016) CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion, Sci. Rep., 6, 26912, https://doi.org/10.1038/srep26912.
- Mehta, D., Stürchler, A., Anjanappa, R. B., Zaidi, S. S.-A., Hirsch-Hoffmann, M., Gruissem, W., and Vanderschuren, H. (2019) Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses, Genome Biol., 20, 80, https://doi.org/10.1186/s13059-019-1678-3.
Дополнительные файлы
