Новые методы количественной оценки репарации двухцепочечных разрывов, основанные на CRISPR/Cas9

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В данном обзоре рассматриваются современные подходы к изучению репарации двухцепочечных разрывов ДНК (DSB) в клетках млекопитающих с использованием системы CRISPR/Cas9. Благодаря своей универсальности и эффективности эндонуклеаза Cas9 применяется во множестве генетических репортёров. Мы обсуждаем различные репортёры, основанные на флуоресценции, применяемые для мониторинга процесса восстановления. Также среди инновационных подходов на основе Cas9 особое внимание уделяется методам анализа как одиночных, так и множественных DSB, включая подходы DSB-TRIP и ddXR. Эти методы открывают новые возможности для исследования причин структурных перестроек или анализа любых геномных участков. Кроме того, в обзоре рассматривается, чем DSB, индуцированные Cas9, отличаются от DSB, создаваемых другими эндонуклеазами, и как эти особенности могут повлиять на механизмы восстановления ДНК. Понимание этих различий имеет решающее значение для планирования экспериментов, направленных на изучение репарации DSB.

Полный текст

Доступ закрыт

Об авторах

А. В. Смирнов

Институт цитологии и генетики СО РАН

Автор, ответственный за переписку.
Email: hldn89@gmail.com
Россия, Новосибирск

А. М. Юнусова

Институт цитологии и генетики СО РАН

Email: hldn89@gmail.com
Россия, Новосибирск

Список литературы

  1. Zhu, Y., Biernacka, A., Pardo, B., Dojer, N., Forey, R., Skrzypczak, M., Fongang, B., Nde, J., Yousefi, R., Pasero, P., Ginalski, K., and Rowicka, M. (2019) qDSB-Seq is a general method for genome-wide quantification of DNA double-strand breaks using sequencing, Nat. Commun., 10, 2313, https://doi.org/10.1038/s41467-019-10332-8.
  2. Scully, R., Panday, A., Elango, R., and Willis, N. A. (2019) DNA double-strand break repair-pathway choice in somatic mammalian cells, Nat. Rev. Mol. Cell Biol., 20, 698-714, https://doi.org/10.1038/s41580-019-0152-0.
  3. Chang, H. H. Y., Pannunzio, N. R., Adachi, N., and Lieber, M. R. (2017) Non-homologous DNA end joining and alternative pathways to double-strand break repair, Nat. Rev. Mol. Cell Biol., 8, 495-506, https://doi.org/10.1038/nrm.2017.48.
  4. Stinson, B. M., and Loparo, J. J. (2021) Repair of DNA double-strand breaks by the nonhomologous end joining pathway, Annu. Rev. Biochem., 90, 137-164, https://doi.org/10.1146/annurev-biochem-080320-110356.
  5. Sfeir, A., and Symington, L. S. (2015) Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway? Trends Biochem. Sci., 11, 701-714, https://doi.org/10.1016/j.tibs.2015.08.006.
  6. Wang, H., and Xu, X. (2017) Microhomology-mediated end joining: new players join the team, Cell Biosci., 7, 6, https://doi.org/10.1186/s13578-017-0136-8.
  7. Ranjha, L., Howard, S. M., and Cejka, P. (2018) Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes, Chromosoma, 2, 187-214, https://doi.org/10.1007/s00412-017-0658-1.
  8. Wright, W. D., Shah, S. S., and Heyer, W. D. (2018) Homologous recombination and the repair of DNA double-strand breaks, J. Biol. Chem., 27, 10524-10535, https://doi.org/10.1074/jbc.TM118.000372.
  9. Chakraborty, S., Schirmeisen, K., and Lambert, S. A. (2023) The multifaceted functions of homologous recombination in dealing with replication-associated DNA damages, DNA Repair (Amst), 129, 103548, https://doi.org/10.1016/ j.dnarep.2023.103548.
  10. Cejka, P., and Symington, L. S. (2021) DNA end resection: mechanism and control, Annu. Rev. Genet., 55, 285-307, https://doi.org/10.1146/annurev-genet-071719-020312.
  11. Kaniecki, K., De Tullio, L., and Greene, E. C. (2018) A change of view: homologous recombination at single-molecule resolution, Nat. Rev. Genet., 4, 191-207, https://doi.org/10.1038/nrg.2017.92.
  12. Tatin, X., Muggiolu, G., Libert, S., Béal, D., Maillet T, Breton, J., and Sauvaigo, S. (2022) A rapid multiplex cell-free assay on biochip to evaluate functional aspects of double-strand break repair, Sci. Rep., 12, 20054, https://doi.org/10.1038/s41598-022-23819-0.
  13. Watanabe, G., and Lieber, M. R. (2023) The flexible and iterative steps within the NHEJ pathway, Prog. Biophys. Mol. Biol., 180-181, 105-119, https://doi.org/10.1016/j.pbiomolbio.2023.05.001.
  14. Vítor, A. C., Huertas, P., Legube, G., and de Almeida, S. F. (2020) Studying DNA double-strand break repair: an ever-growing toolbox, Front. Mol. Biosci., 7, 24, https://doi.org/10.3389/fmolb.2020.00024.
  15. Heemskerk, T., van de Kamp, G., Essers, J., Kanaar, R., and Paul, M. W. (2023) Multi-scale cellular imaging of DNA double strand break repair, DNA Repair (Amst), 131, 103570, https://doi.org/10.1016/j.dnarep.2023.103570.
  16. Penninckx, S., Pariset, E., Cekanaviciute, E., and Costes, S. V. (2021) Quantification of radiation-induced DNA double strand break repair foci to evaluate and predict biological responses to ionizing radiation, NAR Cancer, 4, zcab046, https://doi.org/10.1093/narcan/zcab046.
  17. Otarbayev, D., and Myung, K. (2024) Exploring factors influencing choice of DNA double-strand break repair pathways, DNA Repair (Amst), 140, 103696, https://doi.org/10.1016/j.dnarep.2024.103696.
  18. Jasin, M., and Haber, J. E. (2016) The democratization of gene editing: insights from site-specific cleavage and double-strand break repair, DNA Repair (Amst), 44, 6-16, https://doi.org/10.1016/j.dnarep.2016.05.001.
  19. Schep, R., Brinkman, E. K., Leemans, C., Vergara, X., van der Weide, R. H., Morris, B., van Schaik, T., Manzo, S. G., Peric-Hupkes, D., van den Berg, J., Beijersbergen, R. L., Medema, R. H., and van Steensel, B. (2021) Impact of chromatin context on Cas9-induced DNA double-strand break repair pathway balance, Mol. Cell, 81, 2216-2230, https://doi.org/10.1016/j.molcel.2021.03.032.
  20. Watry, H. L., Feliciano, C. M., Gjoni, K., Takahashi, G., Miyaoka, Y., Conklin, B. R., and Judge, L. M. (2020) Rapid, precise quantification of large DNA excisions and inversions by ddPCR, Sci. Rep., 10, 1-11, https://doi.org/10.1038/s41598-020-71742-z.
  21. Pierce, A. J., Johnson, R. D., Thompson, L. H., and Jasin, M. (1999) XRCC3 promotes homology-directed repair of DNA damage in mammalian cells, Genes Dev., 13, 2633-2638, https://doi.org/10.1101/gad.13.20.2633.
  22. Van de Kooij, B., and van Attikum, H. (2022) Genomic reporter constructs to monitor pathway-specific repair of DNA double-strand breaks, Front. Genet., 12, 809832, https://doi.org/10.3389/fgene.2021.809832.
  23. Cisneros-Aguirre, M., Lopezcolorado, F. W., Tsai, L. J., Bhargava, R., and Stark, J. M. (2022) The importance of DNAPKcs for blunt DNA end joining is magnified when XLF is weakened, Nat. Commun., 13, 3662, https://doi.org/10.1038/s41467-022-31365-6.
  24. Wimberger, S., Akrap, N., Firth, M., Brengdahl, J., Engberg, S., Schwinn, M. K., Slater, M. R., Lundin, A., Hsieh, P.-P., Li, S., Cerboni, S., Sumner, J., Bestas, B., Schiffthaler, B., Magnusson, B., Di Castro, S., Iyer, P., Bohlooly-Y, M., Machleidt, T., Rees, S., Engkvist, O., Norris, T., Cadogan, E. B., Forment, J. V., Šviković, S., Akcakaya, P., Taheri-Ghahfarokhi, A., and Maresca, M. (2023) Simultaneous inhibition of DNA-PK and Polϴ improves integration efficiency and precision of genome editing, Nat. Commun., 14, 4761, https://doi.org/10.1038/s41467-023-40344-4.
  25. Hussmann, J. A., Ling, J., Ravisankar, P., Yan, J., Cirincione, A., Xu, A., Simpson, D., Yang, D., Bothmer, A., Cotta-Ramusino, C., Weissman, J. S., and Adamson, B. (2021) Mapping the genetic landscape of DNA double-strand break repair, Cell, 184, 5653-5669, https://doi.org/10.1016/j.cell.2021.10.002.
  26. Van de Kooij, B., Kruswick, A., van Attikum, H., and Yaffe, M. B. (2022) Multi-pathway DNA-repair reporters reveal competition between end-joining, single-strand annealing and homologous recombination at Cas9-induced DNA double-strand breaks, Nat. Commun., 13, 5295, https://doi.org/10.1038/s41467-022-32743-w.
  27. Certo, M. T., Ryu, B. Y., Annis, J. E., Garibov, M., Jarjour, J., Rawlings, D. J., and Scharenberg, A. M. (2011) Tracking genome engineering outcome at individual DNA breakpoints, Nat. Methods, 8, 671-676, https://doi.org/10.1038/nmeth.1648.
  28. Roidos, P., Sungalee, S., Benfatto, S., Serçin, Ö., Stütz, A. M., Abdollahi, A., Mauer, J., Zenke, F. T., Korbel, J. O., and Mardin, B. R. (2020) A scalable CRISPR/Cas9-based fluorescent reporter assay to study DNA double-strand break repair choice, Nat. Commun., 11, 4077, https://doi.org/10.1038/s41467-020-17962-3.
  29. Richardson, C. D., Kazane, K. R., Feng, S. J., Zelin, E., Bray, N. L., Schäfer, A. J., Floor, S. N., and Corn, J. E. (2018) CRISPR-Cas9 genome editing in human cells occurs via the Fanconi anemia pathway, Nat. Genet., 8, 1132-1139, https://doi.org/10.1038/s41588-018-0174-0.
  30. Zhang, X., Li, T., Ou, J., Huang, J., and Liang, P. (2022) Homology-based repair induced by CRISPR-Cas nucleases in mammalian embryo genome editing, Protein Cell, 5, 316-335, https://doi.org/10.1007/s13238-021-00838-7.
  31. Chien, J. C. Y., Tabet, E., Pinkham, K., da Hora, C. C., Chang, J. C. Y., Lin, S., Badr, C. E., and Lai, C. P. K. (2020) A multiplexed bioluminescent reporter for sensitive and non-invasive tracking of DNA double strand break repair dynamics in vitro and in vivo, Nucleic Acids Res., 48, E100, https://doi.org/10.1093/nar/gkaa669.
  32. Wettengel, J. M., Hansen-Palmus, L., Yusova, S., Rust, L., Biswas, S., Carson, J., Ryu, J., Bimber, B. N., Hennebold, J. D., and Burwitz, B. J. (2023) A multifunctional and highly adaptable reporter system for CRISPR/Cas editing, Int. J. Mol. Sci., 24, 8271, https://doi.org/10.3390/ijms24098271.
  33. Nambiar, T. S., Billon, P., Diedenhofen, G., Hayward, S. B., Taglialatela, A., Cai, K., Huang, J. W., Leuzzi, G., Cuella-Martin, R., Palacios, A., Gupta, A., Egli, D., and Ciccia, A. (2019) Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant, Nat. Commun., 10, 1-13, https://doi.org/10.1038/s41467-019-11105-z.
  34. Liu, M., Zhang, W., Xin, C., Yin, J., Shang, Y., Ai, C., Li, J., Meng, F. L., and Hu, J. (2021) Global detection of DNA repair outcomes induced by CRISPR-Cas9, Nucleic Acids Res., 49, 8732-8742, https://doi.org/10.1093/nar/gkab686.
  35. Rose, J. C., Stephany, J. J., Valente, W. J., Trevillian, B. M., Dang, H. V, Bielas, J. H., Maly, D. J., and Fowler, D. M. (2017) Rapidly inducible Cas9 and DSB-ddPCR to probe editing kinetics, Nat. Methods, 14, 891-896, https://doi.org/10.1038/nmeth.4368.
  36. Miyaoka, Y., Berman, J. R., Cooper, S. B., Mayerl, S. J., Chan, A. H., Zhang, B., Karlin-Neumann, G. A., and Conklin, B. R. (2016) Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing, Sci. Rep., 6, 23549, https://doi.org/10.1038/srep23549.
  37. Liu, S. C., Feng, Y. L., Sun, X. N., Chen, R. D., Liu, Q., Xiao, J. J., Zhang, J. N., Huang, Z. C., Xiang, J. F., Chen, G. Q., Yang, Y., Lou, C., Li, H. D., Cai, Z., Xu, S. M., Lin, H., and Xie, A. Y. (2022) Target residence of Cas9-sgRNA influences DNA double-strand break repair pathway choices in CRISPR/Cas9 genome editing, Genome Biol., 23, 1-32, https://doi.org/10.1186/s13059-022-02736-5.
  38. Arnould, C., Rocher, V., Saur, F., Bader, A. S., Muzzopappa, F., Collins, S., Lesage, E., Le Bozec, B., Puget, N., Clouaire, T., Mangeat, T., Mourad, R., Ahituv, N., Noordermeer, D., Erdel, F., Bushell, M., Marnef, A., and Legube, G. (2023) Chromatin compartmentalization regulates the response to DNA damage, Nature, 623, 183-192, https://doi.org/10.1038/s41586-023-06635-y.
  39. Iacovoni, J. S., Caron, P., Lassadi, I., Nicolas, E., Massip, L., Trouche, D., and Legube, G. (2010) High-resolution profiling of γH2AX around DNA double strand breaks in the mammalian genome, EMBO J., 29, 1446-1457, https://doi.org/10.1038/emboj.2010.38.
  40. Aymard, F., Bugler, B., Schmidt, C. K., Guillou, E., Caron, P., Briois, S., Iacovoni, J. S., Daburon, V., Miller, K. M., Jackson, S. P., and Legube, G. (2014) Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks, Nat. Struct. Mol. Biol., 21, 366-374, https://doi.org/10.1038/nsmb.2796.
  41. Arnould, C., Rocher, V., Finoux, A.-L., Clouaire, T., Li, K., Zhou, F., Caron, P., Mangeot, P. E., Ricci, E. P., Mourad, R., Haber, J. E., Noordermeer, D., and Legube, G. (2021) Loop extrusion as a mechanism for formation of DNA damage repair foci, Nature, 590, 660-665, https://doi.org/10.1038/s41586-021-03193-z.
  42. Bader, A. S., and Bushell, M. (2023) iMUT-seq: high-resolution DSB-induced mutation profiling reveals prevalent homologous-recombination dependent mutagenesis, Nat. Commun., 14, 8419, https://doi.org/10.1038/s41467-023-44167-1.
  43. Dobbs, F. M., van Eijk, P., Fellows, M. D., Loiacono, L., Nitsch, R., and Reed, S. H. (2022) Precision digital mapping of endogenous and induced genomic DNA breaks by INDUCE-seq, Nat. Commun., 13, 3989, https://doi.org/10.1038/s41467-022-31702-9.
  44. Akhtar, W., de Jong, J., Pindyurin, A. V., Pagie, L., Meuleman, W., de Ridder, J., Berns, A., Wessels, L. F. A., van Lohuizen, M., and van Steensel, B. (2013) Chromatin position effects assayed by thousands of reporters integrated in parallel, Cell, 154, 914-927, https://doi.org/10.1016/j.cell.2013.07.018.
  45. Schep, R., Leemans, C., Brinkman, E. K., van Schaik, T., and van Steensel, B. (2022) Protocol: a multiplexed reporter assay to study effects of chromatin context on DNA double-strand break repair, Front. Genet., 12, 1-16, https://doi.org/10.3389/fgene.2021.785947.
  46. Brinkman, E. K., Chen, T., de Haas, M., Holland, H. A., Akhtar, W., and van Steensel, B. (2018) Kinetics and fidelity of the repair of Cas9-induced double-strand DNA breaks, Mol. Cell, 70, 801-813.e6, https://doi.org/10.1016/ j.molcel.2018.04.016.
  47. Chakrabarti, A. M., Henser-Brownhill, T., Monserrat, J., Poetsch, A. R., Luscombe, N. M., and Scaffidi, P. (2019) Target-specific precision of CRISPR-mediated genome editing, Mol. Cell, 73, 699-713.e6, https://doi.org/10.1016/j.molcel.2018.11.031.
  48. Gisler, S., Gonçalves, J. P., Akhtar, W., de Jong, J., Pindyurin, A. V., Wessels, L. F. A., and van Lohuizen, M. (2019) Multiplexed Cas9 targeting reveals genomic location effects and gRNA-based staggered breaks influencing mutation efficiency, Nat. Commun., 10, 1598, https://doi.org/10.1038/s41467-019-09551-w.
  49. Pokusaeva, V. O., Diez, A. R., Espinar, L., Pérez, A. T., and Filion, G. J. (2022) Strand asymmetry influences mismatch resolution during single-strand annealing, Genome Biol., 23, 93, https://doi.org/10.1186/s13059-022-02665-3.
  50. Bosch-Guiteras, N., Uroda, T., Guillen-Ramirez, H. A., Riedo, R., Gazdhar, A., Esposito, R., Pulido-Quetglas, C., Zimmer, Y., Medová, M., and Johnson, R. (2021) Enhancing CRISPR deletion via pharmacological delay of DNA-PKcs, Genome Res., 31, 461-471, https://doi.org/10.1101/gr.265736.120.
  51. Gelot, C., Guirouilh-Barbat, J., Le Guen, T., Dardillac, E., Chailleux, C., Canitrot, Y., and Lopez, B. S. (2016) The cohesin complex prevents the end joining of distant DNA double-strand ends, Mol. Cell, 61, 15-26, https://doi.org/10.1016/j.molcel.2015.11.002.
  52. Canver, M. C., Bauer, D. E., Dass, A., Yien, Y. Y., Chung, J., Masuda, T., Maeda, T., Paw, B. H., and Orkin, S. H. (2014) Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells, J. Biol. Chem., 289, 21312-21324, https://doi.org/10.1074/ jbc.M114.564625.
  53. Li, D., Sun, X., Yu, F., Perle, M. A., Araten, D., and Boeke, J. D. (2021) Application of counter-selectable marker PIGA in engineering designer deletion cell lines and characterization of CRISPR deletion efficiency, Nucleic Acids Res., 49, 2642-2654, https://doi.org/10.1093/nar/gkab035.
  54. Giannoukos, G., Ciulla, D. M., Marco, E., Abdulkerim, H. S., Barrera, L. A., Bothmer, A., Dhanapal, V., Gloskowski, S. W., Jayaram, H., Maeder, M. L., Skor, M. N., Wang, T., Myer, V. E., and Wilson, C. J. (2018) UDiTaSTM, a genome editing detection method for indels and genome rearrangements, BMC Genomics, 19, 212, https://doi.org/10.1186/s12864-018-4561-9.
  55. Danner, E., Lebedin, M., de la Rosa, K., and Kühn, R. (2021) A homology independent sequence replacement strategy in human cells using a CRISPR nuclease, Open Biol., 11, 200283, https://doi.org/10.1098/rsob.200283.
  56. Geng, K., Merino, L. G., Wedemann, L., Martens, A., Sobota, M., Sanchez, Y. P., Søndergaard, J. N., White, R. J., and Kutter, C. (2022) Target-enriched nanopore sequencing and de novo assembly reveals co-occurrences of complex on-target genomic rearrangements induced by CRISPR-Cas9 in human cells, Genome Res., 32, 1876-1891, https://doi.org/10.1101/gr.276901.122.
  57. Kosicki, M., Tomberg, K., and Bradley, A. (2018) Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements, Nat. Biotechnol., 36, 765-771, https://doi.org/10.1038/nbt.4192.
  58. Kosicki, M., Allen, F., Steward, F., Tomberg, K., Pan, Y., and Bradley, A. (2022) Cas9-induced large deletions and small indels are controlled in a convergent fashion, Nat. Commun., 13, 1-11, https://doi.org/10.1038/s41467-022-30480-8.
  59. Brinkman, E. K., Chen, T., Amendola, M., and van Steensel, B. (2014) Easy quantitative assessment of genome editing by sequence trace decomposition, Nucleic Acids Res., 42, e168-e168, https://doi.org/10.1093/nar/gku936.
  60. Abe, T., Inoue, K. Ichi, Furuta, Y., and Kiyonari, H. (2020) Pronuclear microinjection during S-phase increases the efficiency of CRISPR-Cas9-assisted knockin of large DNA donors in mouse zygotes, Cell Rep., 31, 107653, https://doi.org/10.1016/j.celrep.2020.107653.
  61. Chenouard, V., Leray, I., Tesson, L., Remy, S., Allan, A., Archer, D., Caulder, A., Fortun, A., Bernardeau, K., Cherifi, Y., Teboul, L., David, L., and Anegon, I. (2023) Excess of guide RNA reduces knockin efficiency and drastically increases on-target large deletions, iScience, 26, 106399, https://doi.org/10.1016/j.isci.2023.106399.
  62. Wilde, J. J., Aida, T., del Rosario, R. C. H., Kaiser, T., Qi, P., Wienisch, M., Zhang, Q., Colvin, S., and Feng, G. (2021) Efficient embryonic homozygous gene conversion via RAD51-enhanced interhomolog repair, Cell, 184, 3267-3280.e18, https://doi.org/10.1016/j.cell.2021.04.035.
  63. Smirnov, A., Fishman, V., Yunusova, A., Korablev, A., Serova, I., Skryabin, B. V., Rozhdestvensky, T. S., and Battulin, N. (2020) DNA barcoding reveals that injected transgenes are predominantly processed by homologous recombination in mouse zygote, Nucleic Acids Res., 48, 719-735, https://doi.org/10.1093/nar/gkz1085.
  64. Smirnov, A. V., Korablev, A. N., Serova, I. A., Yunusova, A. M., Muravyova, A. A., Valeev, E. S., Battulin, N. R. (2025) Studying concatenation of the Cas9-cleaved transgenes using barcodes, Vavilov J. Genet. Breed, 29, 26-34, https://doi.org/10.18699/vjgb-25-04.
  65. Smirnov, A., and Battulin, N. (2021) Concatenation of transgenic DNA: Random or orchestrated? Genes (Basel), 12, 1969, https://doi.org/10.3390/genes12121969.
  66. Stephenson, A. A., Raper, A. T., and Suo, Z. (2018) Bidirectional degradation of DNA cleavage products catalyzed by CRISPR/Cas9, J. Am. Chem. Soc., 140, 3743-3750, https://doi.org/10.1021/jacs.7b13050.
  67. Zou, R. S., Marin-Gonzalez, A., Liu, Y., Liu, H. B., Shen, L., Dveirin, R. K., Luo, J. X. J., Kalhor, R., and Ha, T. (2022) Massively parallel genomic perturbations with multi-target CRISPR interrogates Cas9 activity and DNA repair at endogenous sites, Nat. Cell Biol., 24, 1433-1444, https://doi.org/10.1038/s41556-022-00975-z.
  68. Rajendra, E., Grande, D., Mason, B., Di Marcantonio, D., Armstrong, L., Hewitt, G., Elinati, E., Galbiati, A., Boulton, S. J., Heald, R. A., Smith, G. C. M., and Robinson, H. M. R. (2024) Quantitative, titratable and high-throughput reporter assays to measure DNA double strand break repair activity in cells, Nucleic Acids Res., 52, 1736-1752, https://doi.org/10.1093/nar/gkad1196.
  69. Xue, C., and Greene, E. C. (2021) DNA repair pathway choices in CRISPR-Cas9-mediated genome editing, Trends Genet., 37, 639-656, https://doi.org/10.1016/j.tig.2021.02.008.
  70. Raper, A. T., Stephenson, A. A., and Suo, Z. (2018) Functional insights revealed by the kinetic mechanism of CRISPR/Cas9, J. Am. Chem. Soc., 140, 2971-2984, https://doi.org/10.1021/jacs.7b13047.
  71. Reginato, G., Dello Stritto, M. R., Wang, Y., Hao, J., Pavani, R., Schmitz, M., Halder, S., Morin, V., Cannavo, E., Ceppi, I., Braunshier, S., Acharya, A., Ropars, V., Charbonnier, J. B., Jinek, M., Nussenzweig, A., Ha, T., and Cejka, P. (2024) HLTF disrupts Cas9-DNA post-cleavage complexes to allow DNA break processing, Nat. Commun., 15, 5789, https://doi.org/10.1038/s41467-024-50080-y.
  72. Kim, S., Kim, D., Cho, S. W., Kim, J., and Kim, J.-S. (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins, Genome Res., 24, 1012-1019, https://doi.org/10.1101/gr.171322.113.
  73. Deshpande, R. A., Marin-Gonzalez, A., Barnes, H. K., Woolley, P. R., Ha, T., and Paull, T. T. (2023) Genome-wide analysis of DNA-PK-bound MRN cleavage products supports a sequential model of DSB repair pathway choice, Nat. Commun., 14, 5759, https://doi.org/10.1038/s41467-023-41544-8.
  74. Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C., and Doudna, J. A. (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9, Nature, 507, 62-67, https://doi.org/10.1038/nature13011.
  75. Knight, S. C., Xie, L., Deng, W., Guglielmi, B., Witkowsky, L. B., Bosanac, L., Zhang, E. T., Beheiry, M. E., Masson, J. B., Dahan, M., Liu, Z., Doudna, J. A., and Tjian, R. (2015) Dynamics of CRISPR-Cas9 genome interrogation in living cells, Science, 350, 823-826, https://doi.org/10.1126/science.aac6572.
  76. Clarke, R., Heler, R., MacDougall, M. S., Yeo, N. C., Chavez, A., Regan, M., Hanakahi, L., Church, G. M., Marraffini, L. A., and Merrill, B. J. (2018) Enhanced bacterial immunity and mammalian genome editing via RNA-polymerase-mediated dislodging of Cas9 from double-strand DNA breaks, Mol. Cell, 71, 42-55.e8, https://doi.org/10.1016/j.molcel.2018.06.005.
  77. Wang, A. S., Chen, L. C., Wu, R. A., Hao, Y., McSwiggen, D. T., Heckert, A. B., Richardson, C. D., Gowen, B. G., Kazane, K. R., Vu, J. T., Wyman, S. K., Shin, J. J., Darzacq, X., Walter, J. C., and Corn, J. E. (2020) The histone chaperone FACT induces Cas9 multi-turnover behavior and modifies genome manipulation in human cells, Mol. Cell, 79, 221-233.e5, https://doi.org/10.1016/j.molcel.2020.06.014.
  78. Maltseva, E. A., Vasil’eva, I. A., Moor, N. A., Kim, D. V., Dyrkheeva, N. S., Kutuzov, M. M., Vokhtantsev, I. P., Kulishova, L. M., Zharkov, D. O., and Lavrik, O. I. (2023) Cas9 is mostly orthogonal to human systems of DNA break sensing and repair, PLoS One, 18, e0294683, https://doi.org/10.1371/journal.pone.0294683.
  79. Bothmer, A., Gareau, K. W., Abdulkerim, H. S., Buquicchio, F., Cohen, L., Viswanathan, R., Zuris, J. A., Marco, E., Fernandez, C. A., Myer, V. E., and Cotta-Ramusino, C. (2020) Detection and modulation of DNA translocations during multi-gene genome editing in T cells, CRISPR J., 3, 177-187, https://doi.org/10.1089/crispr.2019.0074.
  80. Roukos, V., Voss, T. C., Schmidt, C. K., Lee, S., Wangsa, D., and Misteli, T. (2013) Spatial dynamics of chromosome translocations in living cells, Science, 341, 660-664, https://doi.org/10.1126/science.1237150.
  81. Yin, J., Lu, R., Xin, C., Wang, Y., Ling, X., Li, D., Zhang, W., Liu, M., Xie, W., Kong, L., Si, W., Wei, P., Xiao, B., Lee, H.-Y., Liu, T., and Hu, J. (2022) Cas9 exo-endonuclease eliminates chromosomal translocations during genome editing, Nat. Commun., 13, 1204, https://doi.org/10.1038/s41467-022-28900-w.
  82. Szlachta, K., Raimer, H. M., Comeau, L. D., and Wang, Y. H. (2020) CNCC: an analysis tool to determine genome-wide DNA break end structure at single-nucleotide resolution, BMC Genomics, 21, 25, https://doi.org/10.1186/s12864-019-6436-0.
  83. Colleaux, L., D’Auriol, L., Galibert, F., and Dujon, B. (1988) Recognition and cleavage site of the intron-encoded omega transposase, Proc. Natl. Acad. Sci. USA, 85, 6022-6026, https://doi.org/10.1073/pnas.85.16.6022.
  84. Orlando, S. J., Santiago, Y., DeKelver, R. C., Freyvert, Y., Boydston, E. A., Moehle, E. A., Choi, V. M., Gopalan, S. M., Lou, J. F., Li, J., Miller, J. C., Holmes, M. C., Gregory, P. D., Urnov, F. D., and Cost, G. J. (2010) Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology, Nucleic Acids Res., 38, e152, https://doi.org/10.1093/nar/gkq512.
  85. Sugisaki, H., and Kanazawa, S. (1981) New restriction endonucleases from Flavobacterium okeanokoites (FokI) and Micrococcus luteus (MluI), Gene, 16, 73-78, https://doi.org/10.1016/0378-1119(81)90062-7.
  86. Kim, Y., Kweon, J., and Kim, J. S. (2013) TALENs and ZFNs are associated with different mutation signatures, Nat. Methods, 10, 185, https://doi.org/10.1038/nmeth.2364.
  87. Geisinger, J. M., Turan, S., Hernandez, S., Spector, L. P., and Calos, M. P. (2016) In vivo blunt-end cloning through CRISPR/Cas9-facilitated non-homologous end-joining, Nucleic Acids Res., 44, e76, https://doi.org/10.1093/nar/gkv1542.
  88. Wang, Y., Feng, Y.-L., Liu, Q., Xiao, J.-J., Liu, S.-C., Huang, Z.-C., and Xie, A.-Y. (2023) TREX2 enables efficient genome disruption mediated by paired CRISPR-Cas9 nickases that generate 3′-overhanging ends. Mol. Ther. Nucleic Acids, 34, 102072, https://doi.org/10.1016/j.omtn.2023.102072.
  89. Shumega, A. R., Pavlov, Y. I., Chirinskaite, A. V., Rubel, A. A., Inge-Vechtomov, S. G., and Stepchenkova, E. I. (2024) CRISPR/Cas9 as a mutagenic factor, Int. J. Mol. Sci., 25, 823, https://doi.org/10.3390/ijms25020823.
  90. Van Overbeek, M., Capurso, D., Carter, M. M., Frias, E., Russ, C., Reece-Hoyes, J. S., Nye, C., Vidal, B., Zheng, J., Hoffman, G. R., Fuller, C. K., and May, P. (2016) DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks, Mol. Cell, 63, 633-646, https://doi.org/10.1016/j.molcel.2016.06.037.
  91. Longo, G. M. C, Sayols, S., Kotini, A. G., Heinen, S., Möckel, M. M., Beli, P., and Roukos, V. (2024) Linking CRISPR-Cas9 double-strand break profiles to gene editing precision with BreakTag, Nat. Biotechnol., https://doi.org/10.1038/s41587-024-02238-8.
  92. Jones, S. K., Hawkins, J. A., Johnson, N. V., Jung, C., Hu, K., Rybarski, J. R., Chen, J. S., Doudna, J. A., Press, W. H., and Finkelstein, I. J. (2021) Massively parallel kinetic profiling of natural and engineered CRISPR nucleases, Nat. Biotechnol., 39, 84-93, https://doi.org/10.1038/s41587-020-0646-5.
  93. Guo, T., Feng, Y.-L., Xiao, J.-J., Liu, Q., Sun, X.-N., Xiang, J.-F., Kong, N., Liu, S.-C., Chen, G.-Q., Wang, Y., Dong, M.-M., Cai, Z., Lin, H., Cai, X.-J., and Xie, A.-Y. (2018) Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing, Genome Biol., 19, 170, https://doi.org/10.1186/s13059-018-1518-x.
  94. Burgio, G., and Teboul, L. (2020) Anticipating and identifying collateral damage in genome editing, Trends Genet., 36, 905-914, https://doi.org/10.1016/j.tig.2020.09.011.
  95. Pavani, R., Tripathi, V., Vrtis, K. B., Zong, D., Chari, R., Callen, E., Pankajam, A. V., Zhen, G., Matos-Rodrigues, G., Yang, J., Wu, S., Reginato, G., Wu, W., Cejka, P., Walter, J. C., and Nussenzweig, A. (2024) Structure and repair of replication-coupled DNA breaks, Science, 385, eado3867, https://doi.org/10.1126/science.ado3867.
  96. Shin, H. Y., Wang, C., Lee, H. K., Yoo, K. H., Zeng, X., Kuhns, T., Yang, C. M., Mohr, T., Liu, C., and Hennighausen, L. (2017) CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome, Nat. Commun., 8, 15464, https://doi.org/10.1038/ncomms15464.
  97. Korablev, A., Lukyanchikova, V., Serova, I., and Battulin, N. (2020) On-target CRISPR/Cas9 activity can cause undesigned large deletion in mouse zygotes, Int. J. Mol. Sci., 21, 3604, https://doi.org/10.3390/ ijms21103604.
  98. Park, S. H., Cao, M., Pan, Y., Davis, T. H., Saxena, L., Deshmukh, H., Fu, Y., Treangen, T., Sheehan, V. A., and Bao, G. (2022) Comprehensive analysis and accurate quantification of unintended large gene modifications induced by CRISPR-Cas9 gene editing, Sci. Adv., 8, eabo7676, https://doi.org/10.1126/sciadv.abo7676.
  99. Leibowitz, M. L., Papathanasiou, S., Doerfler, P. A., Blaine, L. J., Sun, L., Yao, Y., Zhang, C. Z., Weiss, M. J., and Pellman, D. (2021) Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing, Nat. Genet., 53, 895-905, https://doi.org/10.1038/s41588-021-00838-7.
  100. Shams, A., Higgins, S. A., Fellmann, C., Laughlin, T. G., Oakes, B. L., Lew, R., Kim, S., Lukarska, M., Arnold, M., Staahl, B. T., Doudna, J. A., and Savage, D. F. (2021) Comprehensive deletion landscape of CRISPR-Cas9 identifies minimal RNA-guided DNA-binding modules, Nat. Commun., 12, 5664, https://doi.org/10.1038/s41467-021-25992-8.
  101. Slaymaker, I. M., Gao, L., Zetsche, B., Scott, D. A., Yan, W. X., and Zhang, F. (2015) Rationally engineered Cas9 nucleases with improved specificity, Science, 351, 84-88, https://doi.org/10.1126/science.aad5227.
  102. Kleinstiver, B. P., Pattanayak, V., Prew, M. S., Tsai, S. Q., Nguyen, N. T., Zheng, Z., and Keith Joung, J. (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects, Nature, 529, 490-495, https://doi.org/10.1038/nature16526.
  103. Bolukbasi, M. F., Gupta, A., Oikemus, S., Derr, A. G., Garber, M., Brodsky, M. H., Zhu, L. J., and Wolfe, S. A. (2015) DNA-binding-domain fusions enhance the targeting range and precision of Cas9, Nat. Methods, 12, 1150-1156, https://doi.org/10.1038/nmeth.3624.
  104. Tabassum, T., Pietrogrande, G., Healy, M., and Wolvetang, E. J. (2023) CRISPR-Cas9 direct fusions for improved genome editing via enhanced homologous recombination, Int. J. Mol. Sci., 24, 14701, https://doi.org/10.3390/ijms241914701.
  105. Charpentier, M., Khedher, A. H. Y., Menoret, S., Brion, A., Lamribet, K., Dardillac, E., Boix, C., Perrouault, L., Tesson, L., Geny, S., De Cian, A., Itier, J. M., Anegon, I., Lopez, B., Giovannangeli, C., and Concordet, J. P. (2018) CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair, Nat. Commun., 9, 1-11, https://doi.org/10.1038/s41467-018-03475-7.
  106. Carusillo, A., Haider, S., Schäfer, R., Rhiel, M., Türk, D., Chmielewski, K. O., Klermund, J., Mosti, L., Andrieux, G., Schäfer, R., Cornu, T. I., Cathomen, T., and Mussolino, C. (2023) A novel Cas9 fusion protein promotes targeted genome editing with reduced mutational burden in primary human cells, Nucleic Acids Res., 51, 4660-4673, https://doi.org/10.1093/nar/gkad255.
  107. Jayavaradhan, R., Pillis, D. M., Goodman, M., Zhang, F., Zhang, Y., Andreassen, P. R., and Malik, P. (2019) CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites, Nat. Commun., 10, 2866, https://doi.org/10.1038/s41467-019-10735-7.
  108. Ma, L., Ruan, J., Song, J., Wen, L., Yang, D., Zhao, J., Xia, X., Chen, Y. E., Zhang, J., and Xu, J. (2020) MiCas9 increases large size gene knock-in rates and reduces undesirable on-target and off-target indel edits, Nat. Commun., 11, 6082, https://doi.org/10.1038/s41467-020-19842-2.
  109. Lin, L., Petersen, T. S., Jensen, K. T., Bolund, L., Kühn, R., and Luo, Y. (2017) Fusion of SpCas9 to E. coli Rec A protein enhances CRISPR-Cas9 mediated gene knockout in mammalian cells, J. Biotechnol., 247, 42-49, https://doi.org/10.1016/j.jbiotec.2017.02.024.
  110. Hackley, C. R. (2021) A novel set of Cas9 fusion proteins to stimulate homologous recombination: Cas9-HRs, Cris. J., 4, 253-263, https://doi.org/10.1089/crispr.2020.0034.
  111. Reint, G., Li, Z., Labun, K., Keskitalo, S., Soppa, I., Mamia, K., Tolo, E., Szymanska, M., Meza-Zepeda, L. A., Lorenz, S., Cieslar-Pobuda, A., Hu, X., Bordin, D. L., Staerk, J., Valen, E., Schmierer, B., Varjosalo, M., Taipale, J., and Haapaniemi, E. (2021) Rapid genome editing by CRISPR-Cas9-POLD3 fusion, Elife, 10, e75415, https://doi.org/10.7554/eLife.75415.
  112. Yoo, K. W., Yadav, M. K., Song, Q., Atala, A., and Lu, B. (2022) Targeting DNA polymerase to DNA double-strand breaks reduces DNA deletion size and increases templated insertions generated by CRISPR/Cas9, Nucleic Acids Res., 50, 3944-3957, https://doi.org/10.1093/nar/gkac186.
  113. Vriend, L. E. M., Prakash, R., Chen, C.-C., Vanoli, F., Cavallo, F., Zhang, Y., Jasin, M., and Krawczyk, P. M. (2016) Distinct genetic control of homologous recombination repair of Cas9-induced double-strand breaks, nicks and paired nicks, Nucleic Acids Res., 44, 5204-5217, https://doi.org/10.1093/nar/gkw179.
  114. Galanti, L., Peritore, M., Gnügge, R., Cannavo, E., Heipke, J., Palumbieri, M. D., Steigenberger, B., Symington, L. S., Cejka, P., and Pfander, B. (2024) Dbf4-dependent kinase promotes cell cycle controlled resection of DNA double-strand breaks and repair by homologous recombination, Nat. Commun., 15, 2890, https://doi.org/10.1038/s41467-024-46951-z.
  115. Gutschner, T., Haemmerle, M., Genovese, G., Draetta, G. F., and Chin, L. (2016) Post-translational regulation of Cas9 during G1 enhances homology-directed repair, Cell Rep., 14, 1555-1566, https://doi.org/10.1016/j.celrep.2016.01.019.
  116. Howden, S. E., McColl, B., Glaser, A., Vadolas, J., Petrou, S., Little, M. H., Elefanty, A. G., and Stanley, E. G. (2016) A Cas9 variant for efficient generation of indel-free knockin or gene-corrected human pluripotent stem cells, Stem Cell Rep., 7, 508-517, https://doi.org/10.1016/j.stemcr.2016.07.001.
  117. Yang, S., Li, S., and Li, X.-J. (2018) Shortening the half-life of Cas9 maintains its gene editing ability and reduces neuronal toxicity, Cell Rep., 25, 2653-2659.e3, https://doi.org/10.1016/j.celrep.2018.11.019.
  118. Liu, Y., Cottle, W. T., and Ha, T. (2023) Mapping cellular responses to DNA double-strand breaks using CRISPR technologies, Trends Genet., 39, 560-574, https://doi.org/10.1016/j.tig.2023.02.015.
  119. Wang, T., Wei, J. J., Sabatini, D. M., and Lander, E. S. (2014) Genetic screens in human cells using the CRISPR-Cas9 system, Science, 343, 80-84, https://doi.org/10.1126/science.1246981.
  120. Senturk, S., Shirole, N. H., Nowak, D. G., Corbo, V., Pal, D., Vaughan, A., Tuveson, D. A., Trotman, L. C., Kinney, J. B., and Sordella, R. (2017) Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization, Nat. Commun., 8, 14370, https://doi.org/10.1038/ncomms14370.
  121. Wei, C. T., Popp, N. A., Peleg, O., Powell, R. L., Borenstein, E., Maly, D. J., and Fowler, D. M. (2023) A chemically controlled Cas9 switch enables temporal modulation of diverse effectors, Nat. Chem. Biol., 19, 981-991, https://doi.org/10.1038/s41589-023-01278-6.
  122. Zetsche, B., Volz, S. E., and Zhang, F. (2015) A split-Cas9 architecture for inducible genome editing and transcription modulation, Nat. Biotechnol., 33, 139-142, https://doi.org/10.1038/nbt.3149.
  123. Davis, K. M., Pattanayak, V., Thompson, D. B., Zuris, J. A., and Liu, D. R. (2015) Small molecule-triggered Cas9 protein with improved genome-editing specificity, Nat. Chem. Biol., 11, 316-318, https://doi.org/10.1038/nchembio.1793.
  124. Liu, K. I., Ramli, M. N. Bin, Woo, C. W. A., Wang, Y., Zhao, T., Zhang, X., Yim, G. R. D., Chong, B. Y., Gowher, A., Chua, M. Z. H., Jung, J., Lee, J. H. J., and Tan, M. H. (2016) A chemical-inducible CRISPR-Cas9 system for rapid control of genome editing, Nat. Chem. Biol., 12, 980-987, https://doi.org/10.1038/nchembio.2179.
  125. Hemphill, J., Borchardt, E. K., Brown, K., Asokan, A., and Deiters, A. (2015) Optical control of CRISPR/Cas9 gene editing, J. Am. Chem. Soc., 137, 5642-5645, https://doi.org/10.1021/ja512664v.
  126. Nihongaki, Y., Kawano, F., Nakajima, T., and Sato, M. (2015) Photoactivatable CRISPR-Cas9 for optogenetic genome editing, Nat. Biotechnol., 33, 755-760, https://doi.org/10.1038/nbt.3245.
  127. Zhou, X. X., Zou, X., Chung, H. K., Gao, Y., Liu, Y., Qi, L. S., and Lin, M. Z. (2018) A single-chain photoswitchable CRISPR-Cas9 architecture for light-inducible gene editing and transcription, ACS Chem. Biol., 13, 443-448, https://doi.org/10.1021/acschembio.7b00603.
  128. Jain, P. K., Ramanan, V., Schepers, A. G., Dalvie, N. S., Panda, A., Fleming, H. E., and Bhatia, S. N. (2016) Development of light-activated CRISPR using guide RNAs with photocleavable protectors, Angew. Chemie Int. Ed. Engl., 55, 12440-12444, https://doi.org/10.1002/anie.201606123.
  129. Moroz-Omori, E. V., Satyapertiwi, D., Ramel, M.-C., Høgset, H., Sunyovszki, I. K., Liu, Z., Wojciechowski, J. P., Zhang, Y., Grigsby, C. L., Brito, L., Bugeon, L., Dallman, M. J., and Stevens, M. M. (2020) Photoswitchable gRNAs for spatiotemporally controlled CRISPR-Cas-based genomic regulation, ACS Cent. Sci., 6, 695-703, https://doi.org/10.1021/acscentsci.9b01093.
  130. Zhou, W., Brown, W., Bardhan, A., Delaney, M., Ilk, A. S., Rauen, R. R., Kahn, S. I., Tsang, M., and Deiters, A. (2020) Spatiotemporal control of CRISPR/Cas9 function in cells and zebrafish using light-activated guide RNA, Angew. Chemie Int. Ed. Engl., 59, 8998-9003, https://doi.org/10.1002/anie.201914575.
  131. Liu, Y., Zou, R. S., He, S., Nihongaki, Y., Li, X., Razavi, S., Wu, B., and Ha, T. (2020) Very fast CRISPR on demand, Science, 368, 1265-1269, https://doi.org/10.1126/science.aay8204.
  132. Kosicki, M., Rajan, S. S., Lorenzetti, F. C., Wandall, H. H., Narimatsu, Y., Metzakopian, E., and Bennett, E. P. (2017) Dynamics of indel profiles induced by various CRISPR/Cas9 delivery methods, Prog. Mol. Biol. Transl. Sci., 152, 49-67, https://doi.org/10.1016/bs.pmbts.2017.09.003.
  133. Oakes, B. L., Nadler, D. C., Flamholz, A., Fellmann, C., Staahl, B. T., Doudna, J. A., and Savage, D. F. (2016) Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch, Nat. Biotechnol., 34, 646-651, https://doi.org/10.1038/nbt.3528.
  134. Lundin, A., Porritt, M. J., Jaiswal, H., Seeliger, F., Johansson, C., Bidar, A. W., Badertscher, L., Wimberger, S., Davies, E. J., Hardaker, E., Martins, C. P., James, E., Admyre, T., Taheri-Ghahfarokhi, A., Bradley, J., Schantz, A., Alaeimahabadi, B., Clausen, M., Xu, X., Mayr, L. M., Nitsch, R., Bohlooly-Y, M., Barry, S. T., and Maresca, M. (2020) Development of an ObLiGaRe doxycycline inducible Cas9 system for pre-clinical cancer drug discovery, Nat Commun., 11, 4903, https://doi.org/10.1038/s41467-020-18548-9.
  135. Xu, H., Xiao, T., Chen, C.-H., Li, W., Meyer, C. A., Wu, Q., Wu, D., Cong, L., Zhang, F., Liu, J. S., Brown, M., and Liu, X. S. (2015) Sequence determinants of improved CRISPR sgRNA design, Genome Res., 25, 1147-1157, https://doi.org/10.1101/gr.191452.115.
  136. Boyle, E. A., Becker, W. R., Bai, H. B., Chen, J. S., Doudna, J. A., and Greenleaf, W. J. (2021) Quantification of Cas9 binding and cleavage across diverse guide sequences maps landscapes of target engagement, Sci. Adv., 7, eabe5496, https://doi.org/10.1126/sciadv.abe5496.
  137. Zhang, H., Yan, J., Lu, Z., Zhou, Y., Zhang, Q., Cui, T., Li, Y., Chen, H., and Ma, L. (2023) Deep sampling of gRNA in the human genome and deep-learning-informed prediction of gRNA activities, Cell Discov., 9, 48, https://doi.org/10.1038/s41421-023-00549-9.
  138. Haeussler, M., Schönig, K., Eckert, H., Eschstruth, A., Mianné, J., Renaud, J.-B., Schneider-Maunoury, S., Shkumatava, A., Teboul, L., Kent, J., Joly, J.-S., and Concordet, J.-P. (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR, Genome Biol., 17, 148, https://doi.org/10.1186/s13059-016-1012-2.
  139. Moreno-Mateos, M. A., Vejnar, C. E., Beaudoin, J.-D., Fernandez, J. P., Mis, E. K., Khokha, M. K., and Giraldez, A. J. (2015) CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo, Nat. Methods, 12, 982-988, https://doi.org/10.1038/nmeth.3543.
  140. Doench, J. G., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E. W., Donovan, K. F., Smith, I., Tothova, Z., Wilen, C., Orchard, R., Virgin, H. W., Listgarten, J., and Root, D. E. (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9, Nat. Biotechnol., 34, 184-191, https://doi.org/10.1038/nbt.3437.
  141. Yuan, C. L., and Hu, Y.-C. (2017) A transgenic core facility’s experience in genome editing revolution, Adv. Exp. Med. Biol., 1016, 75-90, https://doi.org/10.1007/978-3-319-63904-8_4.
  142. Kundert, K., Lucas, J. E., Watters, K. E., Fellmann, C., Ng, A. H., Heineike, B. M., Fitzsimmons, C. M., Oakes, B. L., Qu, J., Prasad, N., Rosenberg, O. S., Savage, D. F., El-Samad, H., Doudna, J. A., and Kortemme, T. (2019) Controlling CRISPR-Cas9 with ligand-activated and ligand-deactivated sgRNAs, Nat. Commun., 10, 2127, https://doi.org/10.1038/s41467-019-09985-2.
  143. Maji, B., Gangopadhyay, S. A., Lee, M., Shi, M., Wu, P., Heler, R., Mok, B., Lim, D., Siriwardena, S. U., Paul, B., Dančík, V., Vetere, A., Mesleh, M. F., Marraffini, L. A., Liu, D. R., Clemons, P. A., Wagner, B. K., and Choudhary, A. (2019) A high-throughput platform to identify small-molecule inhibitors of CRISPR-Cas9, Cell, 177, 1067-1079.e19, https://doi.org/10.1016/j.cell.2019.04.009.
  144. Carlson-Stevermer, J., Kelso, R., Kadina, A., Joshi, S., Rossi, N., Walker, J., Stoner, R., and Maures, T. (2020) CRISPRoff enables spatio-temporal control of CRISPR editing, Nat. Commun., 11, 5041, https://doi.org/10.1038/s41467-020-18853-3.
  145. Zou, R. S., Liu, Y., Wu, B., and Ha, T. (2021) Cas9 deactivation with photocleavable guide RNAs, Mol. Cell, 81, 1553-1565.e8, https://doi.org/10.1016/j.molcel.2021.02.007.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Флуоресцентные генетические репортёры DSB. а – Светофорный репортёр (Traffic light reporter). Вызванный Cas9, DSB репарируется или через HDR с использованием донорной последовательности GFP, или через NHEJ/MMEJ, которые приводят к сдвигу рамки считывания и активации mCherry [27]. б – Repair-seq применяет высокопроизводительный нокдаун генов репарации с помощью dCas9-KRAB и библиотеки гРНК CRISPRi. После интеграции вирусов в геном и нокдауна целевых генов популяция трансдуцированных клеток электропорируется рибонуклеопротеиновым комплексом (RNP) Cas9 и гРНК против сайта-мишени, находящегося рядом с гРНК CRISPRi. Это позволяет оценить вклад выключенного гена в репарацию DSB, проанализировав инделы Cas9 [25]. Цветами обозначены уникальные гРНК и экспрессирующие их клеточные клоны (не имеет отношения к сигналу флуоресценции)

Скачать (381KB)
3. Рис. 2. Новые количественные репортёры DSB на основе CRISPR/Cas9. а – DSB-TRIP использует короткие последовательности транспозонов, встроенные в геном в случайных местах. Транспозоны содержат 16-нуклеотидный баркод, спаренный с сайтом-мишенью для Cas9, что позволяет просеквенировать баркод и инделы вместе (1) и ассоциировать их с различными хроматиновыми контекстами после локализации транспозона (2). Метод позволяет различать пути репарации, такие как NHEJ, MMEJ и репарацию, основанную на одноцепочечном шаблоне (SSTR), который имеет схожие начальные этапы с гомологичной рекомбинацией (HR) [19]. б – Метод ddXR объединяет индукцию делеций с помощью Cas9 и их обнаружение с ddPCR. ddXR позволяет определить частоты делеций и инверсий, используя один и тот же зонд [20]. в – Секвенирование конкатемеров основано на микроинъекции линеаризованной ДНК в пронуклеус, где ДНК остаётся связанной с Cas9 после разрезания (реакция с термически инактивированным белком используется в качестве контроля). Баркоды позволяют идентифицировать отдельные копии и исследовать пути репарации DSB путём секвенирования участков слияний между копиями

Скачать (407KB)
4. Рис. 3. Особенности системы CRISPR/Cas9, которые могут повлиять на результат репарации DSB. Время связывания Cas9 и ДНК определяется неизвестными клеточными факторами. Сигнатуры инделов Cas9 зависят от характера концов ДНК после разрезания [66]. Белковые домены Cas9 влияют на репарацию DSB локально или позволяют переключать активность Cas9 в ходе клеточного цикла. Индуцибельные варианты Cas9 контролируют момент появления DSB с помощью фотоактивации (очень быстрый CRISPR) или химической стабилизации (DD-Cas9); DD – дестабилизирующий домен; PAM – мотив рядом с протоспейсером

Скачать (317KB)

© Российская академия наук, 2025