Lines of equal phases and phase invariant in the sound field of the deep sea

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The spatial-frequency characteristics of the amplitudes and phases of sound pressure in the deep sea have been studied. Analytical relationships have been obtained that allow one to calculate and compare the amplitude-phase structures of water, leaky and trapped modes, as well as the sound pressure field formed by the sum of the modes. The calculations have been performed using the modified WKB (Wentzel–Kramers–Brillouin) approximation. It has been shown that in the deep sea, as in the shallow sea, there are stable lines of equal phases along which, under certain conditions, coherent summation of complex Fourier components is possible. To describe the lines of equal phases, a differential equation has been obtained that uses the phase invariant, already studied in the shallow sea, as a basic parameter. This has made it possible to study the properties of the phase invariant corresponding to water, leaky and trapped modes in all zones of the sound field for the deep sea as well. It is established that at different distances in the field constructed from the sum of all modes, invariant properties are manifested, first of all, those modes that dominate at these distances. It is shown that the leaky modes formed in the near illumination zone and in the shadow zone, formed by steep rays reflected from the bottom, have invariant properties only at large distances from the source. Water and trapped modes have invariant properties in full and at all distances. Recommendations are given on the use of equal phase lines and the phase invariant in processing experimental data and modeling.

全文:

受限制的访问

作者简介

S. Aksenov

A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: skbmortex@mail.ru
俄罗斯联邦, Moscow, 119991

G. Kuznetsov

A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: skbmortex@mail.ru
俄罗斯联邦, Moscow, 119991

A. Stepanov

Samara National Research University named after academician S.P. Korolev

Email: skbmortex@mail.ru
俄罗斯联邦, Samara, 443086

参考

  1. Бреховских Л.М. Волны в слоистых средах. М.: Наука, 1973. 343 с.
  2. Бреховских Л.М., Лысанов Ю.П. Теоретические основы акустики океана. М.: Наука, 2007. 370 c.
  3. Кацнельсон Б.Г., Петников В.Г. Акустика мелкого моря. М.: Наука, 1997. 193 с.
  4. D’Spain G., Kuperman W. Application of waveguide invariants to analysis of spectrograms from shallow water environments that vary in range and azimuth // J. Acoust. Soc. Am. 1999. V. 106. № 5. P. 2454–246
  5. Акустика океана. М.: Наука, 1974. 668 с.
  6. Распространение волн и подводная акустика. М.: Мир, 1980. 229 с.
  7. Ainslie M.A., Packman M.N., Harrison C.H. Fast and explicit Wentzel–Kramers–Brillouin mode sum for the bottom-interacting field, including leaky modes // J. Acoust. Soc. Am. 1998. V. 103. № 4. P. 1804–1812.
  8. Аксенов С.П., Кузнецов Г.Н. Амплитудная и фазовая структура низкочастотного гидроакустического поля в глубоком океане // Акуст. журн. 2021. Т. 67. № 5. С. 493–504. https://doi.org/10.31857/S0320791921040018
  9. Аксенов С.П., Кузнецов Г.Н. Оценка расстояния до источника в глубоком море с использованием пространственно-частотных характеристик интерференционного инварианта и эффективных фазовых и групповых скоростей // Акуст. журн. 2021. Т. 67. № 6. С. 603–616. https://doi.org/10.31857/S0320791921060010
  10. Аксенов С.П. Верификация вычислительной программы в модовом ВКБ-приближении для мелкого и глубокого морей // Доклады XVII школы-семинара им. акад. Л.М. Бреховских “Акустика океана”. М.: ИО РАН, 2020. С. 364–370.
  11. Чупров С.Д. Интерференционная структура звукового поля в слоистом океане // Акустика океана: современное состояние. М.: Наука, 1982. С. 71–91.
  12. Орлов Е.Ф., Шаронов Г.А. Интерференция звуковых волн в океане. Владивосток: Дальнаука, 1998. 195 с.
  13. Грачев Г.А. К теории инвариантов акустического поля в слоистых волноводах // Акуст. журн. 1993. Т. 39. № 1. С. 67–71.
  14. Aksenov S.P., Kuznetsov G.N. Determination of interference invariants in a deep-water waveguide by amplitude and phase methods // Phys. Wave Phen. 2021. V. 29. No. 1. P. 81–87.
  15. Zhao Z.D., Wu J.R., Shang E.C. How the thermocline affects the value of the waveguide invariant in a shallow-water waveguide // J. Acoust. Soc. Am. 2015. V. 138. № 1. P. 223–231.
  16. Kuznetsov G.N., Stepanov A.N. Interference and phase invariants of sound fields // Phys. Wave Phenom. 2021. V. 29. № 3. P. 285–292.
  17. Кузнецов Г.Н., Степанов А.Н. Линии равных фаз звукового давления в пространственно-частотной области гидроакустического поля // Докл. Рос. Акад. наук. Физика, техн. науки. 2021. Т. 498. С. 17–21. https://doi.org/10.31857/S2686740021030111
  18. Kuznetsov G.N. and Stepanov A.N. Phase Invariants of Vector–Scalar Fields Excited in the Shallow Sea by Multipole Sources // Phys. Wave Phenom. 2023. V. 31. № 6. P. 371–382. https://doi.org/10.3103/S1541308X23060055
  19. Кузнецов Г.Н., Степанов А.Н. Влияние направленности источников на фазовые инварианты векторно-скалярных полей в мелком море // Докл. Акад. наук. Физика, техн. науки. 2023. Т. 512. № 1. С. 17–23. https://doi.org/10.31857/S2686740023050073
  20. Аксенов С.П., Кузнецов Г.Н. Энергетические инварианты в звуковых полях глубокого и мелкого моря // Докл. Акад. наук. Физика, техн. науки. 2022. Т. 507. № 1. С. 9–14.
  21. Аксенов С.П., Кузнецов Г.Н. Интерференционные инварианты в максимумах гидроакустического поля в глубоком море // Акуст. журн. 2024. Т. 70. № 1. С. 65–76. https://doi.org/10.31857/S0320791924010099
  22. Кузнецов Г.Н., Степанов А.Н. Векторно-скалярные поля мультипольных гидроакустических источников, эквивалентных шумоизлучению морских объектов. М.: Буки Веди, 2022. 304 с.
  23. Новиков А.К. Корреляционные измерения в корабельной акустике. Л.: Судостроение, 1971. 256 с.
  24. Кузькин В.М., Переселков С.А. Интерферометрическая диагностика гидродинамических возмущений мелкого моря. М.: ЛЕНАНД, 2019. 200 с.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The WRSZ adopted in the calculations (a simplified version of the WRSZ for the Mediterranean Sea). The source and receiver depths zs = 80 m and z = 60 m are indicated by red lines.

下载 (127KB)
3. Fig. 2. Attenuation of the ZD amplitude with distance and contributions of individual mode groups.

下载 (183KB)
4. Fig. 3. (a–g) — Surfaces of the ZD amplitudes in the BZAO for different mode groups: (a) — all water modes, (b) — trapped modes, (c) — leaky modes, (d) — the sum of all modes. (e–h) — Surfaces of the phases of sound pressure in the BZAO for different mode groups: (e) — all water modes, (e) — trapped modes, (g) — leaky modes, (h) — the sum of all modes.

下载 (838KB)
5. Fig. 4. (a, d) — Amplitude and phase surfaces of the mode group of the first type, (b, d) — mode groups of the second type, and (c, e) — sums of water modes of the first and second types.

下载 (443KB)
6. Fig. 5. (a, b) — Contour graphs of phase surfaces of water mode groups of the first and second types, and (c) — sums of all water modes. (d, d) — FI graphs along equal phase lines of water mode groups of the first and second types, and (e) — sums of all water modes.

下载 (213KB)
7. Fig. 6. Contour graphs of phase surfaces in BZAO (distances of 1000–2500 m): (a) — sum of water modes, (b) — trapped modes, (c) — leaky modes, and (d) — sum of all modes. Thickened black lines represent one of the equal phase lines.

下载 (316KB)
8. Fig. 7. Frequency dependences of the phase invariant along the selected equal-phase line in BZAO (distances of 1000–2500 m): (a) — sum of water modes, (b) — trapped modes, (c) — leaky modes, and (d) — sum of all modes.

下载 (126KB)
9. Fig. 8. Contour graphs of phase surfaces in ZT1 (distances of 4000–10500 m): (a) — sum of water modes, (b) — trapped modes, (c) — leaky modes, and (d) — sum of all modes. The thickened black lines represent one of the equal-phase lines.

下载 (288KB)
10. Fig. 9. Frequency dependences of the phase invariant along the selected equal-phase line in ZT1 (distances of 4000–10500 m): (a) — sum of water modes, (b) — trapped modes, (c) — leaky modes, and (d) — sum of all modes.

下载 (114KB)
11. Fig. 10. Contour plots of phase surfaces in ZT2 (distances of 14,000–30,000 m): (a) — sum of water modes, (b) — trapped modes, (c) — leaky modes, and (d) — sum of all modes. Thickened black lines represent one of the equal-phase lines.

下载 (256KB)
12. Fig. 11. Frequency dependences of the phase shifters along the equal-phase line in ZT (14,000–30,000 m): (a) — sum of water modes, (b) — trapped modes, (c) — leaky modes, and (d) — sum of all modes.

下载 (104KB)
13. Fig. 12. Contour plots of phase surfaces in the DZAO (distances 35,000–45,000 m): (a) — sum of water modes, (b) — trapped modes, (c) — leaky modes, and (d) — sum of all modes. Thickened black lines represent one of the equal phase lines.

下载 (294KB)
14. Fig. 13. Frequency dependences of the phase shifters along the equal-phase line in DZAO (35,000–54,000 m): (a) — sum of water modes, (b) — trapped modes, (c) — leaky modes, (d) — sum of all modes.

下载 (106KB)

版权所有 © The Russian Academy of Sciences, 2025