Characteristics of low-frequency ambient noise in shallow water with heterogeneous bottom structure

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The characteristics of low-frequency noise fields in shallow-water acoustic waveguides with a heterogeneous bottom structure in the presence of water-like areas are analyzed through numerical experiments. Two models of the seabed are considered: an idealized one with a linear change in the sound speed in the bottom along one of the Cartesian coordinates and a realistic one where the sound speed in the bottom depends on all three coordinates. The second model is close to the real situation in one of the shallow water areas of the Kara Sea. Noise fields from distributed near-surface sources (surface waves) and a point source (ship noise) are studied. Calculations are performed using the wide-angle parabolic equation method. Averaged horizontal and vertical directivity characteristics of the surface wave noise field are obtained, as well as average intensity values depending on the sound frequency and the position of the receiving vertical array. Directional diagrams of the local source noise level are constructed for bottom areas with different properties. The possibility of detecting areas with a water-like bottom by recording the noise of a moving vessel on a stationary vertical acoustic array is demonstrated. In the case of distributed sources, it is shown that the averaged noise characteristics weakly depend on the sound speed in the bottom.

全文:

受限制的访问

作者简介

S. Bodjona

Prokhorov General Physics Institute, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: bodjona@kapella.gpi.ru
俄罗斯联邦, Moscow, 119991

D. Sidorov

Prokhorov General Physics Institute, Russian Academy of Sciences

Email: sidorov@kapella.gpi.ru
俄罗斯联邦, Moscow, 119991

V. Petnikov

Prokhorov General Physics Institute, Russian Academy of Sciences

Email: petniko@kapella.gpi.ru
俄罗斯联邦, Moscow, 119991

A. Lunkov

Prokhorov General Physics Institute, Russian Academy of Sciences; Bauman Moscow State Technical University

Email: lunkov@kapella.gpi.ru
俄罗斯联邦, Moscow, 119991; Moscow, 105005

参考

  1. Малашенков Б.М., Акчурин Л.И. Проблемы и перспективы разработки нефтегазовых месторождений на арктическом шельфе Российской Федерации // Вестник Московского университета. Сер. 21. Управление (государство и общество). 2015. № 2. С. 49–64.
  2. Газарян Ю.Л. Об энергетическом спектре шума в плоскослоистых волноводах // Акуст. журн. 1975. Т. 21. № 3. С. 382–389.
  3. Аредов А.А., Дронов Г.М., Фурдуев А.В. Влияние ветра и внутренних волн на параметры шума океана // Акуст. журн. 1990. Т. 36. № 4. С. 581.
  4. Ingenito F., Wolf S.N. Site dependence of wind-dominated ambient noise in shallow water // J. Acoust. Soc. Am. 1989. V. 85. № 1. P. 141–145.
  5. Григорьев В.А., Петников В.Г., Росляков А.Г., Терёхина Я.Е. Распространение звука в мелком море с неоднородным газонасыщенным дном // Акуст. журн. 2018. Т. 64. № 3. С. 342–358.
  6. Grigor’ev V.A., Lunkov A.A., Petnikov V.G. Effect of sound-speed inhomogeneities in sea bottom on the acoustic wave propagation in shallow water // Physics of Wave Phenomena. 2020. V. 28. P. 255–266.
  7. Petnikov V.G. et al. Modeling underwater sound propagation in an arctic shelf region with an inhomogeneous bottom // J. Acoust. Soc. Am. 2022. V. 151. № 4. P. 2297–2309.
  8. Yang T.C., Yoo K. Modeling the environmental influence on the vertical directionality of ambient noise in shallow water // J. Acoust. Soc. Am. 1997. V. 101. № 5. P. 2541–2554.
  9. Katsnelson B., Petnikov V., Lynch J. Fundamentals of shallow water acoustics. New York: Springer, 2012. V. 1.
  10. Сидоров Д.Д., Петников В.Г., Луньков А.А. Широкополосное звуковое поле в мелководном волноводе с неоднородным дном // Акуст. журн. 2023. Т. 69. № 5. С. 608–619.
  11. Зверев В.А. Избранные труды. Н. Новгород: Институт прикладной физики РАН, 2004.
  12. Зверев В.А. Формирование изображений акустических источников в мелком море. Н. Новгород: ИПФ РАН, 2019. 112 с.
  13. Carey W.M., Evans R.B. Ocean ambient noise: measurement and theory. Springer Science & Business Media, 2011.
  14. Collins M.D. A split-step Padé solution for the parabolic equation method // J. Acoust. Soc. Am. 1993. V. 93. № 4. P. 1736–1742.
  15. Wilson J.H. Wind-generated noise modeling // J. Acoust. Soc. Am. 1983. V. 73. № 1. P. 211–216.
  16. Leigh C.V., Eller A.I. Dynamic ambient noise model comparison with Point Sur, California, in situ data // Contract. 2006. V. 24. № 02-D. P. 6602.
  17. Heaney K.D. Rapid geoacoustic characterization using a surface ship of opportunity // IEEE J. Oceanic Engineering. 2004. V. 29. № 1. P. 88–99.
  18. Завольский Н.А., Раевский М.А. Горизонтальная анизотропия динамических шумов в глубоком и мелком море // Акуст. журн. 2019. Т. 65. № 2. С. 197–202.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Model for calculating the underwater noise field: (a) - in the horizontal plane; (b) - in the vertical plane

下载 (123KB)
3. Fig. 2. Idealized model of a waveguide with a transition region: (a) — in the horizontal plane; (b) — in the vertical plane. The triangle and crosses indicate the position of the receiving chain. The dotted curve and stars, respectively, are the boundaries of the noise region and noise sources.

下载 (114KB)
4. Fig. 3. (a) — Directivity patterns of the noise field of distributed sources in the vertical plane D′(θ); (b) — directivity patterns in the horizontal plane I ′(β) for two spectral noise components of 100 and 500 Hz with the antenna located in the center of the transition region. In the right figure, normalization (5) was carried out to the minimum value with the subsequent addition of 1 dB

下载 (120KB)
5. Fig. 4. (a) — Directivity patterns in the vertical plane Dʹ(θ); (b) — directivity patterns in the horizontal plane Iʹ(β) for the 500 Hz noise component when the antenna is located at points with coordinates Y = −1000, −500, 0, 500, 1000 m. In the right figure, normalization (5) was carried out to the minimum value with the subsequent addition of 1 dB

下载 (190KB)
6. Fig. 5. (a) — Distribution of sound speed in the bottom at a depth of 25 m from the water-bottom boundary. Vertical directivity patterns D′(θ) for three positions of the acoustic receiving system for two frequencies of surface sources: (b) — 100 Hz; (c) — 500 Hz. (d) and (e) — I ′(β) for the same frequencies and antenna positions

下载 (487KB)
7. Fig. 6. Decrease in the vessel noise level with distance (the average value in all directions is solid lines and the maximum spread of possible values ​​is dashed lines) in areas with different types of bottom at a radiation frequency of 100 Hz. The color of the line corresponds to the color of the circles in Fig. 5, highlighting one or another area.

下载 (86KB)
8. Fig. 7. (a) — Schematic diagram of numerical experiments with the vessel moving along the water-like region (along arrow 1) and across (along arrow 2), the triangle marks the position of the vertical chain of hydrophones; the color indicates the distribution of the sound speed in the bottom in the horizontal plane at a depth of 25 m from the water-bottom boundary; (b) — the distribution of the sound speed in the vertical plane along arrow 2, (c) — the dependence of the spectral amplitude of the noise field at the point of the vertical chain of hydrophones on the position of the vessel moving along arrow 1, the numbers in the frame indicate the corresponding frequency values ​​of the spectral components; (d) — the amplitude of the first mode and the total field when the vessel crosses the water-like region (movement along arrow 2)

下载 (284KB)

版权所有 © The Russian Academy of Sciences, 2025