Kinetic Model of Erythrocyte Hemolysis Under the Action of an Azo Generator of Peroxide Radicals

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A kinetic model of hemolysis of erythrocyte suspension under the action of the azo generator of peroxide radicals AAPH has been developed. The model is based on the assumption of cell hemolysis as a macroscopic consequence of the process of lipid peroxidation developing in the lipid region of the membrane, that lead to the accumulation of a certain molecular product, the critical concentration of which causes hemolysis. The kinetic component of the model is implemented as a solution to the direct problem of chemical kinetics with an obtainment of kinetic curves of formation of the supposed hemolysis factors. Due to the heterogeneity of the erythrocyte population, their morphological and other characteristics, including the response to the effect of the hemolytic factor, are statistically distributed. In this regard, the Gaussian normal distribution function was used as a mathematical basis for an accurate solution to the problem of the relationship between the degree of hemolysis and the concentration of the acting factor. This made it possible to describe the results of the hemolytic experiment with a good approximation.

Texto integral

Acesso é fechado

Sobre autores

B. Psikha

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: psi@icp.ac.ru
Rússia, Chernogolovka

E. Sokolova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: psi@icp.ac.ru
Rússia, Chernogolovka

N. Dubenskaya

Lomonosov Moscow State University

Email: psi@icp.ac.ru
Rússia, Moscow

N. Neshev

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: psi@icp.ac.ru
Rússia, Chernogolovka

Bibliografia

  1. Sæbø I.P., Bjørås M., Franzyk H. et al. // Intern. J. Mol. Sci. 2023. V. 24(3). Article 2914. https://doi.org/10.3390/ijms24032914
  2. Shevchenko O.G. // Bioorg. Khimiya. 2024. V. 50. № 6. P. 720. https://doi.org/10.31857/s0132342324060026
  3. Niki E. // Methods Enzymol. 1990. V. 186. P. 100. https://doi.org/10.1016/0076-6879(90)86095-D
  4. Shevchenko O.G., Shishkina L.N. // Usp. Sovrem. Biol. 2014. V. 134. № 2. P. 133.
  5. Sato Y., Kamo S., Takahashi T. et al. // Biochemistry. 1995. V. 34. № 28. P. 8940. https://doi.org/10.1021/bi00028a002
  6. Celedón G., Rodriguez I., España J. et al. // Free Radical Res. 2001. V. 34. P. 17. https://doi.org/10.1080/10715760100300031
  7. López-Alarcón C., Fuentes-Lemus E., Figueroa J.D. et al. // Free Radical Biol. Med. 2020. V. 160. P. 78. https://doi.org/10.1016/j.freeradbiomed.2020.06.021
  8. Sokolova E.M., Dubenskaya N.A., Psikha B.L., Neshev N.I. // Biophysics. 2023. V. 68. № 4. P. 705. https://doi.org/10.31857/S0006302923040099
  9. Werber J., Wang Y.J., Milligan M. et al. // J. Pharm. Sci. 2011. V. 100. № 8. P. 3307. https://doi.org/10.1002/jps.22578
  10. Wahl R.U.R., Zeng L., Madison S.A. et al. // J. Chem. Soc., Perkin Trans. 2. 1998. № 9. P. 2009. https://doi.org/10.1039/A801624K
  11. Krainev A.G., Bigelow D.J. // Ibid. 1996. № 4. P. 747. https://doi.org/10.1039/P29960000747
  12. Niki E., Komuro E., Takahashi M. et al. // J. Biol. Chem. 1988. V. 263. № 36. P. 19809. https://doi.org/10.1016/S0021-9258(19)77707-2
  13. Gerasimov G.Ya., Levashov V.Yu. // Khim. Fizika. 2023. V. 42. № 8. P. 12. https://doi.org/10.31857/S0207401X23080046
  14. Arsentiev S.D., Davtyan A.G., Manukyan Z.O. et al. // Khim. Fizika. 2024. V. 43. № 1. P. 39. https://doi.org/10.31857/S0207401X24010044
  15. Rusina I.F., Veprintsev T.L., Vasiliev R.F. // Khim. Fizika. 2022. V. 41. № 2. P. 12. https://doi.org/10.31857/S0207401X22020108
  16. Molodochkina S.V., Loshadkin D.V., Pliss E.M. // Khim. Fizika. 2024. V. 43. № 1. P. 52. https://doi.org/10.31857/S0207401X24010063
  17. Moskalenko I.V., Tikhonov I.V. // Khim. Fizika. 2022. V. 41. № 7. P. 18. https://doi.org/10.31857/S0207401X22070123
  18. Serebryakova O.V., Govorin A.V., Prosyanik V.I. et al. // Kazan. Med. Zhurn. 2008. V. 89. № 2. P. 132.
  19. Harris W.S., Pottala J.V., Varvel S.A. et al. // Prostaglandins Leukot. Essent. Fatty Acids. 2013. V. 88. № 4. P. 257. https://doi.org/10.1016/j.plefa.2012.12.004
  20. Denisov E.T., Afanas’ev I.B. Oxidation and antioxidants in organic chemistry and biology. Boca Raton (USA): CRC Press, 2005. https://doi.org/10.1201/9781420030853
  21. Chow C.K. // Amer. J. Clin. Nutr. 1975. V. 28. № 7. P. 756. https://doi.org/10.1093/ajcn/28.7.756
  22. Oxy Radicals and Their Scavenger Systems / Eds. Cohen G., Greenwald R.A. Amsterdam: Elsevier Science Publ., 1983. V. 1. P. 26.
  23. Remorova A.A., Roginsky V.A. // Kinet. Katal. 1991. V. 32. № 4. P. 808.
  24. Mukai K., Sawada K., Kohno Y. et al. // Lipids. 1993. V. 28. P. 747. https://doi.org/10.1007/BF02535998
  25. Ouchi A., Ishikura M., Konishi K. et al. // Ibid. 2009. V. 44. № 10. P. 935. https://doi.org/10.1007/s11745-009-3339-x
  26. Guéraud F., Atalay M., Bresgen N. et al. // Free Radical Res. 2010. V. 44. № 10. P. 1098. https://doi.org/10.3109/10715762.2010.498477
  27. Valgimigli L. // Biomolecules. 2023. V. 13. № 9. Article 1291. https://doi.org/10.3390/biom13091291
  28. Yoshida Y., Umeno A., Shichiri M. // J. Clin. Biochem. Nutr. 2013. V. 52. № 1. P. 9. https://doi.org/10.3164/jcbn.12-112
  29. Dahle L.K., Hill E.G., Holman R.T. // Arch. Biochem. Biophys. 1962. V. 98. № 2. P. 253. https://doi.org/10.1016/0003-9861(62)90181-9
  30. Pryor W.A., Stanley J.P., Blair E. // Lipids. 1976. V. 11. № 5. P. 370. https://doi.org/10.1007/BF02532843
  31. Kreuzer F., Yahr W.Z. // J. Appl. Physiol. 1960. V. 15. P. 1117. https://doi.org/10.1152/jappl.1960.15.6.1117
  32. Ivkov V.G., Berestovsky G.N. Lipid bilayer of biological membranes. Moscow: Nauka, 1982.
  33. Waugh R.E., Sarelius I.H. // Amer. J. Physiol. 1996. V. 271. № 6. P. 1847. https://doi.org/10.1152/ajpcell.1996.271.6.C1847
  34. Dupuy A.D., Engelman D.M. // PNAS. 2008. V. 105. № 8. P. 2848. https://doi.org/10.1073/pnas.0712379105
  35. Shurkhina E.S., Nesterenko V.M., Tsvetayeva N.V. et al. // Klin. Lab. Diagn. 2014. № 6. P. 41.
  36. Novinka P., Korab-Karpinski E., Guzik P. // J. Med. Sci. 2019. V. 88. № 1. P. 52. https://doi.org/10.20883/jms.338
  37. Verbolovich V.P., Podgorny Yu.K., Podgornaya L.M. // Vopr. Med. Khimii. 1989. V. 35. № 5. P. 35.
  38. Neshev N.I. Dissertation abstract ... Cand. Sci. (Biol.). Moscow, 2002.
  39. Alberts B., Bray D., Lewis J. et al. Molecular Biology of the Cell. 2nd ed. Transl. from English. Moscow: Mir, 1994. V. 1.
  40. Ataullakhanov F.I., Korunova N.O., Spiridonov I.S. et al. // Biol. Membr. 2009. V. 26. № 3. P. 163.
  41. Cook J.S. // J. Gen. Physiol. 1965. V. 48. № 4. P. 719. https://doi.org/10.1085/jgp.48.4.719
  42. Deuticke B., Heller K.B., Haest C.W. // Biochim. Biophys. Acta. 1986. V. 854. № 2. P. 169. https://doi.org/10.1016/0005-2736(86)90108-2

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Decomposition of AARN in aqueous medium.

Baixar (64KB)
3. Fig. 2. Calculated kinetic curves of hydroperoxide (1), endoperoxide (2) and malonic dialdehyde (3) accumulation in the process of initiated oxidation of the hydrocarbon part of the erythrocyte membrane. The concentration of initiator [AAPH]0 = 2 · 10-3 mol/l.

Baixar (80KB)
4. Fig. 3. Time dependence of the degree of erythrocyte haemolysis in the presence of peroxide oxidation initiator AAPH. Initiator concentration [AAPH]0 · 103 = 2 (1), 4 (2), 8 (3), 10 (4) mol/l. The temperature was 37 °C. Dots - experiment according to [8], solid lines - results of solving the system of equations (1)-(9), (11).

Baixar (76KB)
5. Fig. 4. Position drift of the mathematical expectation [X]m by ROOH (●), EP (○), and MDA (■).

Baixar (69KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025