Deuterium substitution and charge retention in ions of organic and bioorganic compounds. Part 1. Apamin

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This work continues the development of a new method for detecting different structural forms of biomolecules or organic compounds by analyzing hydrogen/deuterium exchange mass spectra of multiply charged (z > 1) or singly charged (z = 1) ions. The method is based on the best approximation of experimental mass spectra obtained by electrospray ionization of electrolyte solutions using a linear combination of several H/D/z distributions, assuming independent substitution of exchangeable hydrogen atoms with deuterium and independent retention of a certain number of charge carriers. The method is tested using apamin, an 18-amino acid polypeptide with a molecular mass of about 2025.886 Da. The relation between the obtained mass spectral components and the structural forms of apamin formed during hydrogen/deuterium exchange is analyzed. The comparison is made for conditions with and without the addition of ND3-containing gas.

About the authors

V. V. Raznikov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: raznikova.mari@yandex.ru
Moscow, Russia

M. O. Raznikova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: raznikova.mari@yandex.ru
Chernogolovka, Russia

A. R. Pihtelev

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: raznikova.mari@yandex.ru
Moscow, Russia

S. V. Filatov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: raznikova.mari@yandex.ru
Moscow, Russia

I. V. Sulimenkov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: raznikova.mari@yandex.ru
Moscow, Russia

References

  1. Kaltashov I.A., Abzalimov R.R. // J. Am. Soc. Mass Spectrom. 2008. V. 19. № 8. P. 1239. https://doi.org/10.1016/j.jasms.2008.05.018
  2. Frimpong A.K., Abzalimov R.R., Uversky V.N., Kaltashov I.A. // Proteins. 2010. V. 78. № 3. P. 714. https://doi.org/10.1002/prot.22604
  3. Raznikova M.O., Raznikov V.V. // Khim. Fizika. 2001. V. 20. № 4. P. 13.
  4. Raznikov V.V., Raznikova M.O., Sulimenkov I.V. // Anal. Bioanal. Chem. 2019. V. 411. № 24. P. 6409. https://doi.org/10.1007/s00216-019-02019-2
  5. Stepanov V.M. Molecular biology. Structure and functions of proteins. Moscow: Nauka, 2005.
  6. Masson G.R., Burke J.E., Ahn N.G. et al. // Nature Methods. 2019. V. 596. P. 595. https://doi.org/10.1038/s41592-019-0459-y
  7. Abzalimov R.R., Kaltashov I.A. // J. Am. Soc. Mass Spectrom. 2006. V. 17. № 11. P. 1543. https://doi.org/10.1016/j.jasms.2006.07.017.
  8. Xiao H., Hoerner J.K., Eyles S.J. et al. // Protein Sci. 2005. V. 14. № 2. P. 543. https://doi.org/10.1110/ps.041001705
  9. Kostyukevich Y., Acter T., Zherebker A. et al. // Mass Spectrom. Rev. 2018. V. 37. № 6. P. 1. https://doi.org/10.1002/mas.21565
  10. Raznikova M.O., Raznikov V.V. // Khim. Fizika. 2005. V. 24. № 1. P. 13.
  11. Raznikov V.V., Raznikova M.O. // Eur. J. Mass Spectrom. 2009. V. 15. P. 367.
  12. Raznikova M.O., Raznikov V.V. // Molecular Biology. 2015. V. 49. № 5. P. 728. https://doi.org/10.1134/S0026893315050143
  13. Raznikova M.O., Raznikov V.V. // Russ. J. Phys. Chem. B. 2018. V. 12. № 2. P. 271. https://doi.org/10.1134/S1990793118020252
  14. Raznikov V.V., Raznikova M.O., Pridatchenko M.L. // Mass-Spectrometry. 2016. V.13. № 2. P. 124.
  15. Raznikov V.V., Zelenov V.V., Aparina E.V., Sulimenkov I.V., Raznikova M.O. // Mass-Spectrometry. 2020. V. 17. №. 2. P. 103. https://doi.org/10.25703/MS.2020.17.26
  16. Kostyukevich Y., Kononikhin A., Popov I., Nikolaev E. // Anal. Chem. 2013. V. 85. P. 5330. https://doi.org/10.1021/ac4006606
  17. Dodonov A.F., Kozlovski V.I., Soulimenkov I.V. et al. // Eur. J. Mass Spectrom. 2000. V. 6. № 6. P. 481. https://doi.org/10.1255/ejms.378
  18. Raznikov V.V., Raznikova M.O., Sulimenkov I.V., Zelenov V.V. // Anal. Bioanal. Chem. 2023. V.415. № 12. P.2193. https://doi.org/10.1007/s00216-023-04625-7
  19. Dempsey C.E. // Biochemistry. 1986. V. 25. P. 3904. https://doi.org/10.1021/bi00361a025
  20. Suvorina M.Y., Surin A.K., Dovidchenko N.V., Lobanov M.Y., Galzitskaya O.V. // Biochemistry (Moscow). 2012. V. 77. P. 616. https://doi.org/10.1134/S0006297912060089
  21. Wang F, Tang X. // Biochemistry. 1996. V.35. P. 4069. https://doi.org/10.1021/bi9521304
  22. Kramer G. Mathematical Methods of Statistics. Moscow: Mir, 1975.
  23. Raznikov V.V., Raznikova M.O. // Int. J. Mass Spectrom. Ion Processes. 1985. V.63. P. 157. https://doi.org/10.1016/0168-1176(85)80023-9
  24. Raznikov V.V., Raznikova M.O. // Int. J. Mass Spectrom. Ion Processes. 1991. V.103. P. 67. https://doi.org/10.1016/0168-1176(91)80079-3
  25. Dubovitskii V.A., Irzhak V.I. // Polym. Sci. B. 2005. V.47. № 1. P. 22.
  26. Kuzmenkov A.I., Peigneur S., Nasburg J.A. et al. // Front. Pharmacol. 2022. V. 13. 977440. https://doi.org/10.3389/fphar.2022.977440
  27. Raznikov V.V., Raznikova M.O., Sulimenkov I.V., Zelenov V.V. // Mass-Spectrometry. 2023. V. 20. № 2. P. 77. https://doi.org/10.25703/MS.2023.20.08
  28. Chen S.H., Russell D.H. // J. Am. Soc. Mass Spectrom. 2015. V. 26. № 9. P. 1433. https://doi.org/10.1007/s13361-015-1191-1
  29. Purves R.W., Barnett D.A., Guevremont R. // Int. J. Mass Spectrom. 2000. V. 197. P. 163. https://doi.org/10.1016/S1387-3806(99)00240-7
  30. Moskalenko I.V., Tikhonov I.V. // Russ. J. Phys. Chem. B. 2022. V. 16. № 4. P. 602. https://doi.org/10.1134/S1990793122040121
  31. Shaitan K.V. // Russ. J. Phys. Chem. B. 2023. V. 17. № 3. P. 550. https://doi.org/10.1134/s1990793123030259
  32. Shishkina L.N., Kozlov M.V., Konstantinova T.V., Smirnova A.N., Shvydkiy V.O. // Russ. J. Phys. Chem. B. 2023. V. 17. № 1. P. 141. https://doi.org/10.1134/S1990793123010104
  33. Smirnova A.N., Shvydkiy V.O., Shishkina L.N. // Russ. J. Phys. Chem. B. 2021. V. 15. № 4. P. 710. https://doi.org/10.1134/S1990793121040102
  34. Yakovleva M.A., Radchenko A.S., Kostyukov A.A. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. № 1. P. 90. https://doi.org/10.1134/S199079312201033X
  35. Vasilieva A.D., Yurina L.V., Azarova D.Y. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. № 1. P. 118. https://doi.org/10.1134/S1990793122010316
  36. Zelenov V.V., Aparina E.V. // Russ. J. Phys. Chem. B. 2024. V. 18. № 3. P. 821. https://doi.org/10.1134/S199079312470024

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences