New Manganese(II) Coordination Compounds with 4-{[(1H-Pyrrol-2-yl)methylene]amino}-4H-1,2,4-triazole

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The reaction of manganese(II) chloride with the azomethine ligand 4-{[(1H-pyrrol-2-yl)methylene]amino}-4H-1,2,4-triazole (HPyrtrz) yielded crystals of the 1D-polymeric compound [MnII(HPyrtrz)(H2O)Cl2]n (I). The addition of the co-ligand 1,10-phenanthroline (phen) to the synthesis of I was found to led to the sequential crystallization of two products, namely, the 1D-polymeric compound [MnII(Phen)Cl2]n (II) and the mononuclear complex [MnII(phen)2Cl2] HPyrtrz (II). Complex III was found to be isolated as a single product in the reaction of compound I with phen or in the reaction of the known complex [MnII(Phen)2Cl2] with HPyrtrz, respectively. The crystal structures of compounds I-III were determined by single-crystal X-ray diffraction (CIF files CCDC № 2339139 (I), № 2344064 (II), № 2339140 (III)). For I and III, antimicrobial activity was studied against E. coli and S. aureus bacterial strains and Penicillium italicum Wehmer mold. According to the temperature dependence of magnetic susceptibility, antiferromagnetic exchange interactions between Mn2+ ions (J = –2.69 cm–1) are realized in compound I. Spectral-luminescent studies showed that HPyrtrz, I and III exhibit blue luminescence in the solid phase.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Bovkunov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: bazhina@igic.ras.ru
Ресей, Moscow

E. Bazhina

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: bazhina@igic.ras.ru
Ресей, Moscow

M. Shmelev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: bazhina@igic.ras.ru
Ресей, Moscow

N. Gogoleva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: bazhina@igic.ras.ru
Ресей, Moscow

A. Anisimov

HSE University

Email: bazhina@igic.ras.ru
Ресей, Moscow

S. Kottsov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: bazhina@igic.ras.ru
Ресей, Moscow

K. Babeshkin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: bazhina@igic.ras.ru
Ресей, Moscow

N. Efimov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: bazhina@igic.ras.ru
Ресей, Moscow

M. Metlin

Lebedev Physical Institute, Russian Academy of Sciences

Email: bazhina@igic.ras.ru
Ресей, Moscow

I. Taydakov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: bazhina@igic.ras.ru
Ресей, Moscow

L. Fetisov

North-Caucasian Zonal Scientific Research Veterinary Institute, Federal Rostov Agricultural Research Centre

Email: bazhina@igic.ras.ru
Ресей, Novocherkassk

A. Svyatogorova

North-Caucasian Zonal Scientific Research Veterinary Institute, Federal Rostov Agricultural Research Centre

Email: bazhina@igic.ras.ru
Ресей, Novocherkassk

A. Zubenko

North-Caucasian Zonal Scientific Research Veterinary Institute, Federal Rostov Agricultural Research Centre

Email: bazhina@igic.ras.ru
Ресей, Novocherkassk

M. Kiskin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: bazhina@igic.ras.ru
Ресей, Moscow

I. Eremenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: bazhina@igic.ras.ru
Ресей, Moscow

Әдебиет тізімі

  1. Haque S., Tripathy S., Patra C.R. // Nanoscale. 2021. V. 13. P. 16405.
  2. Ali B., Iqbal M.A. // ChemistrySelect. 2017. V. 2. P. 1586.
  3. Cheng Y.-Z., Lv L.-L., Zhang L.-L. et al. // J. Mol. Struct. 2021. V. 1228 P. 129745.
  4. Loginova N.V., Harbatsevich H.I., Osipovich N.P. et al. // Curr. Med. Сhem. 2020. V. 27. P. 5213.
  5. Freeland-Graves J.H., Bose T., Karbassian A. // Metallotherapeutic drugs and metal-based diagnostic agents: the use of metals in medicine / eds. M. Gielen, E.R.T. Tiekink. Chichester: John Wiley & Sons, Ltd, 2005. P. 159.
  6. Kongot M., Reddy D. S., Singh V. et al. // Spectroc. Acta 2020. V. 231. P. 118123.
  7. Saleem S., Parveen B., Abbas K. et al. // Appl. Organomet. Chem. 2023. V. 37. P. e7234.
  8. Belaid S., Landreau A., Djebbar S. et al. // J. Inorg. Biochem. 2008. V. 102. P. 63.
  9. Saleh M.G.A., El-Sayed W.A., Zayed E.M. et al. // Appl. Organomet. Chem. 2024. V. 38. Art. e7397.
  10. Kubens L., Truong K.-N., Lehmann C.W. et al. // Eur. J. Org. Chem. 2023. V. 29. P. e202301721.
  11. Seeger M., Otto W., Flick W. et al. // Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co., 2012. P. 41.
  12. Zheng R., Guo J., Cai X. et al. // Colloids Surf. B. 2022. V. 213. P. 112432.
  13. Henoumont C., Devreux M., Laurent S. // Molecules. 2023. V. 28. P. 7275.
  14. Cloyd R.A., Koren S.A., Abisambra J.F. // Front. Aging Neurosci. 2018. V. 10. P. 403.
  15. Silva A.C., Lee J.H., Aoki I., Koretsky A.P. // NMR Biomed. 2004. V. 17. P. 532.
  16. Gao C., Zhang X., Liang W. et al. // Inorg. Chem. Commun. 2023. V. 155. P. 111031.
  17. Qin Y., She P., Huang X. et al. // Coord. Chem. Rev. 2020. V. 416. P. 213331.
  18. Давыдова М.П., Багрянская И.Ю., Рахманова М.И. и др. // Журн. общ. химии. 2023. Т. 93. № 2. С. 266.
  19. Deswal Y., Asija S., Kumar D. et al. // Res. Chem. Intermed. 2022. V. 48. P. 703..
  20. Ivanov A.V., Shcherbakova V.S., Sobenina L.N. // Russ. Chem. Rev. 2023. V. 92. P. RCR5090.
  21. da Forezi L.S.M., Lima C.G.S., Amaral A.A.P. et al. // Chem. Record. 2021. V. 21. P. 2782.
  22. Mateev E., Georgieva M., Zlatkov A. // J. Pharm. Pharm. Sci. 2022. V. 25. P. 24.
  23. Moneo-Corcuera A., Pato-Doldan B., Sánchez-Molina I. et al. // Molecules. 2021. V. 26. P. 6020.
  24. Askew J.H., Shepherd H.J. // Dalton Trans. 2020. V. 49. P. 2966.
  25. Petrenko Y.P., Piasta K., Khomenko D.M. et al. // RSC Adv. 2021. V. 11. P. 23442.
  26. Gusev A., Kiskin M., Braga E. et al. // Dalton Trans. 2025. V. 54. P. 3335.
  27. Mahesh K., Karpagam S., Pandian K. // Top. Curr. Chem. 2019. V. 377. P. 12.
  28. Scattergood P.A., Sinopoli A., Elliott P.I.P. // Coord. Chem. Rev. 2017. V. 350. P. 136.
  29. Li A.-M., Hochdörffer T., Wolny J.A. et al. // Magnetochemistry. 2018. V. 4. P.34.
  30. Dong Y.-N., Xue J.-P., Yu M., Tao J. // Inorg. Chem. Commun. 2022. V. 140. P. 109475.
  31. Čechová D., Martišková A., Moncol J. // Acta Chim. Slovaca. 2014. V. 7. P. 15.
  32. TOPAS Software. Version 4.2. Karlsruhe: Bruker AXS. 2009.
  33. Neese F. // Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022. V. 12. P. e1606.
  34. Neese F., Wennmohs F., Becker U., Riplinger C. // JCP. 2020. V. 152. P. 224108.
  35. Adamo C., Barone V. // JCP. 1999. V. 110. P. 6158.
  36. Weigend F., Ahlrichs R. // PCCP. 2005. V. 7. P. 3297.
  37. Barone V., Cossi M. // J. Phys. Chem. A. 1998. V. 102. P. 1995.
  38. Cammi R., Mennucci B., Tomasi J. // J. Phys. Chem. A. 2000. V. 104. P. 5631.
  39. Hirata S., Head-Gordon M. // Chem. Phys. Lett. 1999. V. 314. P. 291.
  40. Burlov A.S., Vlasenko V.G., Koshchienko Yu.V. et al. // Polyhedron. 2018. V. 154. P. 65.
  41. SMART (control) and SAINT (integration). Software. Version 5.0. Madison (WI, USA): Bruker AXS Inc. 1997.
  42. Sheldrick G.M. SADABS. Madison (WI, USA): Bruker AXS Inc. 1997.
  43. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  44. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 3397.
  45. Lu X.-M., Li P.-Z., Wang X.-T. et al. // Polyhedron. 2008. V. 27. P. 3669.
  46. Majumder A., Westerhausen M., Kneifel A.N. et al. // Inorg. Chim. Acta. 2006. V. 359. P. 3841.
  47. Domide D., Hübner O., Behrens S. et al. // Eur. J. Inorg. Chem. 2011. V. 2011. P. 1387.
  48. Lubben M., Meetsma A., Feringa B. L. // Inorg. Chim. Acta. 1995. V. 230. P. 169.
  49. Wu J.-Z., Tanase S., Bouwman E. et al. // Inorg. Chim. Acta. 2003. V. 351. P. 278.
  50. Richards P.M., Quinn R.K., Morosin B. // J. Chem. Phys. 1973. V. 59. P. 4474.
  51. Yang E., Zhang J., Chen Y.-B. et al. // Acta Crystallogr. E. 2004. V. 60. Art. m390.
  52. Saha U., Dutta D., Bauzá A. et al. // Polyhedron. 2019. V. 159. P. 387.
  53. Yang Q., Nie J.-J., Xu D.-J. // Acta Crystallogr. E. 2008. V. 64. Art. m757.
  54. Boro M., Banik S., Gomila R.M. et al. // Inorganics. 2024. V. 12. P. 139.
  55. Dey R., Ghoshal D. // Polyhedron. 2012. V. 34. P. 24.
  56. Ракитин Ю.В., Калинников В.Т. Современная магнетохимия. СПб.: Наука, 1994. 276 c.
  57. Chilton N.F., Anderson R.P., Turner L.D. et al. // J. Comput. Chem. 2013. V. 34. P. 1164.
  58. Vos G., Haasnoot J.G., Verschoor G.C. et al. // Inorg. Chim. Acta. 1985. V. 105. P. 31.
  59. Meng H., Zhu W., Li F. et al. // Laser Photonics Rev. 2021. V. 15. P. 2100309.
  60. Tao P., Liu S.-J., Wong W.-Y. // Adv. Opt. Mater. 2020. V. 8. P. 2000985.
  61. Ciuba M.A., Levitus M. // ChemPhysChem. 2013. V. 14. P. 3495.
  62. Davydova M.P., Bauer I.A., Brel V.K. et al. // Eur. J. Inorg. Chem. 2020. V. 2020. P. 695.
  63. Armaroli N., Cola L.D., Balzani V. et al. // Faraday Trans. 1992. V. 88. P. 553.
  64. Accorsi G., Listorti A., Yoosaf K., Armaroli N. // Chem. Soc. Rev. 2009. V. 38. P. 1690.
  65. de Souza Junior M.V., de Oliveira Neto J.G., Viana J. R. et al. // Vib. Spectrosc. 2024. V. 133. P. 103710.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Experimental (1) and calculated (2) diffraction patterns of the compound HРyrtrz.

Жүктеу (101KB)
3. Fig. 2. Experimental (1) and calculated (2) diffraction patterns of compound I.

Жүктеу (138KB)
4. Fig. 3. Experimental (1) and calculated (2) diffraction patterns of compound II.

Жүктеу (135KB)
5. Fig. 4. Experimental (1) and calculated (2) diffraction patterns of compound III.

Жүктеу (170KB)
6. Fig. 5. Comparison of IR spectra of compounds HРyrtrz, I, II and III.

Жүктеу (284KB)
7. Fig. 6. Comparison of IR spectra of Phen · H2O, HРyrtrz, the known complex [Mn(Phen)2Cl2] and compounds II, III.

Жүктеу (303KB)
8. Fig. 7. Fragment of the polymer chain of compound I (H atoms at C atoms are not shown). Symmetry codes: #1 0.5−x, 0.5+y, 0.5−z; #2 0.5−x, −0.5+y, 0.5−z; #3 x, 1+y, z; #4 x, −1+y, z.

Жүктеу (413KB)
9. Fig. 8. Fragment of the polymer chain of compound II (H atoms at C atoms are not shown). Symmetry codes: #1 2−x, 1− y, 1− z; #2 1− x, 1− y, 1− z; #3 1+ x, y, z; #4 −1+ x, y, z; #5 3− x, 1− y, 1− z.

Жүктеу (409KB)
10. Fig. 9. Molecular structure of complex III (H atoms at C atoms are not shown).

Жүктеу (148KB)
11. Fig. 10. Fragment of the crystal packing of complex III. The dotted lines show the C–H Cl and N–H Cl interactions.

Жүктеу (255KB)
12. Fig. 11. Temperature dependence of χT for I in a magnetic field of 5000 Oe in the temperature range of 2–300 K. The solid line is the approximation in the PHI program [58].

Жүктеу (83KB)
13. Fig. 12. Excitation (dashed lines) and luminescence (solid lines) spectra for HРyrtrz (1, 2), compound I (3, 4) and compound III (5, 6), respectively, in the crystalline phase at T = 300 K.

Жүктеу (199KB)
14. Fig. 13. Time dependences of the luminescence intensity of HРyrtrz, I and III under pulsed excitation at a wavelength of 376 nm (pulse length 56 ps) at T = 300 K.

Жүктеу (174KB)
15. Fig. 14. Color radiation diagram for HРyrtrz, I and III.

Жүктеу (249KB)
16. Fig. 15. EAS of solutions in DMSO (C = 0.33 × 10⁻⁴ mol/L, l = 1 cm) (1 and 2) and SD of polycrystalline samples (3 and 4) for HРyrtrz (1 and 3) and compound III (2 and 4).

Жүктеу (194KB)
17. Fig. 16. The systems under consideration: a dimer with putative π...π-interactions between [Mn(Phen)₂Cl₂] and HРyrtrz (a); a dimer with putative C−H...π-interactions between [Mn(Phen)₂Cl₂] and HРyrtrz (b).

Жүктеу (119KB)
18. Fig. 17. The most intense transition dipole moments for the systems under consideration: a) a dimer with putative π...π interactions between [Mn(Phen)₂Cl₂] and HРyrtrz; b) a dimer with putative C–H...π interactions between [Mn(Phen)₂Cl₂] and HРyrtrz. The optical excitation spectrum of compound III is shown in blue, the vertical blue bands correspond to the transition dipole moments, their heights correspond to the calculated oscillator strengths. For the transition dipole moments discussed in the text, the bands are continued by a dotted line.

Жүктеу (182KB)
19. Fig. 18. Molecular orbitals corresponding to excitations at 301 nm (a), 409 nm (b), 431 nm (c), 464 nm (d).

Жүктеу (810KB)

© Российская академия наук, 2025