МЕТОДИКА ДЛЯ СТАБИЛЬНОГО ВЫДЕЛЕНИЯ ДВУЦЕПОЧЕЧНОЙ РНК ИЗ ШТАММА Escherichia coli НТ115 БЕЗ ИСПОЛЬЗОВАНИЯ ФЕНОЛА

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Получение фракции двуцепочечной РНК – неотъемлемая часть исследований РНК-интерференции, направленных на решение как фундаментальных, так и прикладных задач. Наработка дцРНК в культуре бактерий – распространенная методика в силу сравнительно невысокой стоимости и потенциала для масштабирования. В данной статье мы предлагаем новый метод для быстрого и эффективного выделения дцРНК из культуры бактерий в качестве альтернативы классической фенол-хлороформной экстракции. В разработанной нами методике фенол заменен на менее токсичный метанол, а выделенная таким образом бактериальная тотальная РНК содержит до 25% целевой молекулы, при этом примесь ДНК в ней отсутствует, что в том числе делает допустимым применение такой дцРНК без дополнительных этапов очистки. Применение разработанной методики будет оправдано в лабораториях, занимающихся как фундаментальными, так и прикладными исследованиями РНК-интерференции. Однако для масштабирования технологии для применения в сельском хозяйстве могут потребоваться корректировки описанного в данной работе протокола.

Об авторах

А. А Иванов

Институт цитологии и генетики СО РАН; Новосибирский государственный университет

Email: a.ivanov2@g.nsu.ru
Россия, Новосибирск; Россия, Новосибирск

Т. С Голубева

Институт цитологии и генетики СО РАН; Балтийский федеральный университет им. Иммануила Канта

Россия, Новосибирск; Россия, Калининград

Список литературы

  1. Castel S.E., Martienssen R.A. // Nat. Rev. Genet. 2013. V. 14. P. 100–112. https://doi.org/10.1038/nrg3355
  2. Svoboda P. // Front. Plant Sci. 2020. V. 11. P. 1237. https://doi.org/10.3389/fpls.2020.01237
  3. Li H., Guan R., Guo H., Miao X. // Plant Cell Environ. 2015. V. 38. P. 2277–2285. https://doi.org/10.1111/pce.12546
  4. Islam M.T., Davis Z., Chen L., Englander J., Zomorodi S., Frank J., Bartlett K., Somers E., Carballo S.M., Kester M., Shaked A., Pourtaheri P., Sherif M.S. // Microb. Biotechnol. 2021. V. 14. P. 1847–1856. https://doi.org/10.1111/1751-7915.13699
  5. Kalyandurg P.B., Sundararajan P., Dubey M., Ghadamgah F., Zahid M.A., Whisson S.C., Vetukuri R.R. // Phytopathology. 2021. V. 111. P. 2166–2175. https://doi.org/10.1094/phyto-02-21-0054-sc
  6. Mitter N., Worrall E.A., Robinson K.E., Li P., Jain R.G., Taochy C., Fletcher S.J., Carroll B.J., Lu G.Q. (Max), Xu Z.P. // Nat. Plants. 2017. V. 3. P. 1–10. https://doi.org/10.1038/nplants.2016.207
  7. Islam M.T., Sherif S.M. // Int. J. Mol. Sci. 2020. V. 21. P. 2072. https://doi.org/10.3390/ijms21062072
  8. Konakalla N.C., Bag S., Deraniyagala A.S., Culbreath A.K., Pappu H.R. // Viruses. 2021. V. 13. P. 662. https://doi.org/10.3390/v13040662
  9. Sundaresha S., Sharma S., Bairwa A., Tomar M., Kumar R., Bhardwaj V., Jeevalatha A., Bakade R., Salaria N., Thakur K., Singh B.P., Chakrabarti S.K. // Pest. Manag. Sci. 2022. V. 78. P. 3183–3192. https://doi.org/10.1002/ps.6949
  10. Gan D., Zhang J., Jiang H., Jiang T., Zhu S., Cheng B. // Plant Cell Rep. 2010. V. 29. P. 1261–1268. https://doi.org/10.1007/s00299-010-0911-z
  11. Tenllado F., Martinez-Garcia B., Vargas M., Diaz-Ruiz J.R. // BMC Biotechnol. 2003. V. 3. P. 3. https://doi.org/10.1186/1472-6750-3-3
  12. Ivanov A.A., Golubeva T.S. // J. Fungi. 2023. V. 9. P. 1100. https://doi.org/10.3390/jof9111100
  13. Verdonck T.W., Yanden Broeck J. // Front. Physiol. 2022. V. 13. P. 836106. https://doi.org/10.3389/fphys.2022.836106
  14. Ann S.-J., Donahue K., Koh Y., Martin R.R., Choi M.-Y. // Int. J. Insect Sci. 2019. V. 11. P. 4032. https://doi.org/10.1177/1179543319840323
  15. Wang Z., Li Y., Zhang B., Gao X., Shi M., Zhang S., Zhong S., Zheng Y., Liu X. // Adv. Funct. Mater. 2023. V. 33. P. 3143. https://doi.org/10.1002/adfm.202213143
  16. Guan R., Chu D., Han X., Miao X., Li H. // Front. Bioeng. Biotechnol. 2021. V. 9. P. 3790. https://doi.org/10.3389/fbioe.2021.753790
  17. Strezsak S., Beuning P., Skizim N. // Anal. Methods. 2021. V. 13. P. 179–185. https://doi.org/10.1039/DDAY01498B
  18. Aranda P.S., Lajoie D.M., Joreyk C.L. // Electrophoresis. 2012. V. 33. P. 366–369. https://doi.org/10.1002/elps.20110335
  19. Livshits M.A., Amosova O.A., Lyubchenko Y.L. // J. Biomol. Struct. Dyn. 1990. V. 7. P. 1237–1249. https://doi.org/10.1080/073911102.1990.10508562
  20. Wickham H., Averick M., Bryan J., Chang W., McGowan L.D.A., François R., Grolemund G., Hayes A., Henry L., Hester J., Kuhn M., Pedersen L.T., Miller E., Bache M.S., Muller K., Ooms J., Robinson D., Seidel P.D., Spinu V., Takahashi K., Yanghan D., Wilke C., Woo K., Yutani H. // J. Open Source Softw. 2019. V. 4. P. 1686. https://doi.org/10.21105/joss.01686

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025